满分5 > 高中数学试题 >

已知函数f(x)的定义域为R,对任意x1,x2都满足f(x1+x2)=f(x1)...

已知函数f(x)的定义域为R,对任意x1,x2都满足f(x1+x2)=f(x1)+f(x2),当x>0时f(x)>0.
(1)试判断f(x)的奇偶性和单调性;
(2)当manfen5.com 满分网时,f(cos2θ-3)+f(4m-2mcosθ)>0对所有的θ均成立,求实数m的取值范围.
(1)先求得f(x),令x=y=0,有f(0)=0,再令x1=x,x2=-x,即f(-x)=-f(x),故f(x)为奇函数.在R上任取x1<x2,则x1-x2<0,再比较f(x1)和f(x2)的大小,从而得出:f(x)是增函数; (2)根据f(x)为R上的增函数也是奇函数,f(cos2θ-3)+f(4m-2mcosθ)>0对所有的θ均成立可转化成cos2θ-3>2mcosθ-4m对所有的均成立,然后利用分离法即可求出实数m的取值范围. 【解析】 (1)∵f(x1+x2)=f(x1)+f(x2),令x1=x2=0得f(0)=0. 再令x1=x,x2=-x,则f(0)=f(x)+f(-x)=0,∴f(-x)=-f(x). ∴f(x)为R上的奇函数. 设x1<x2,则x2-x1>0,当x>0时f(x)>0.∴f(x2-x1)>0 由f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)>0,∴f(x2)>f(x1) ∴f(x)为R上的增函数. (2)∵f(cos2θ-3)+f(4m-2mcosθ)>0,∴f(cos2θ-3)>-f(4m-2mcosθ) ∵f(x)为R上的奇函数,,即f(-x)=-f(x),∴f(cos2θ-3)>f(2mcosθ-4m) 又∵f(x)为R上的增函数,cos2θ-3>2mcosθ-4m对所有的均成立,2cos2θ-4>2m(cosθ-2)恒成立,又∵cosθ-2<0,∴恒成立, 又∵ 又,∴0≤cosθ≤1,∴cosθ-2<0, ∴ 当且仅当即时取等号. ∴ ∴
复制答案
考点分析:
相关试题推荐
对任何函数f(x),x∈D,可按图示构造一个数列发生器,其工作原理如下:①输入数据x∈D,经数列发生器输出x1=f(x);②若x1∉D,则数列发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去.现定义manfen5.com 满分网
(Ⅰ)若输入manfen5.com 满分网,则由数列发生器产生数列{xn},请写出数列{xn}的所有项;
(Ⅱ)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x的值;
(Ⅲ)若输入x时,产生的无穷数列{xn}满足:对任意正整数n,均有xn<xn+1,求x的取值范围.

manfen5.com 满分网 查看答案
等比数列{an}的公比q>1,其第17项的平方等于第24项,求使manfen5.com 满分网成立的最小正整数n的值.
查看答案
函数f(x)的导函数f'(x)=2x+b,且f(0)=c,manfen5.com 满分网
(1)若c>0,g(x)为奇函数,且g(x)的最大值为manfen5.com 满分网求b,c的值;
(2)若函数F(x)=f(x)+2-c定义域为[-1,1],且F(x)的最小值为2,当函数f(x)在区间[-1,1]上有零点,求实数c的取值范围.
查看答案
已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…
(1)证明:数列{lg(1+an)}是等比数列;
(2)求数列{an}的通项公式.
查看答案
记函数f(x)=manfen5.com 满分网的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.
(1)求A;
(2)若B⊆A,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.