满分5 >
高中数学试题 >
函数y=4sinxcosx的最小正周期及最大值分别是( ) A.2π,2 B.π...
函数y=4sinxcosx的最小正周期及最大值分别是( )
A.2π,2
B.π,2
C.2π,1
D.π,1
考点分析:
相关试题推荐
全集为实数集R,M={x|-2≤x≤2},N={x|x<1},则(∁
RM)∩N=( )
A.{x|x<-2}
B.{x|-2<x<1}
C.{x|x<1}
D.{x|-2≤x<1}
查看答案
已知函数
.
(1)设x
1,x
2∈(0,1),证明:(x
1-x
2)•[f(x
1)-f(x
2)]≥0;
(2)设x∈(0,1),证明:
;
(3)设x
1,x
2,x
3都是正数,且x
1+x
2+x
3=1,求
的最小值.
查看答案
某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.
为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数y=f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?
查看答案
如图,四棱锥P-ABCD的底面是AB=2,BC=
的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD
(1)证明:侧面PAB⊥侧面PBC;
(2)求侧棱PC与底面ABCD所成的角;
(3)求直线AB与平面PCD的距离.
查看答案
已知抛物线y=n(n+1)x
2-(2n+1)x+1,当n=1,2,3,…时,该抛物线在x轴上所截得的线段长依次组成数列{a
n},其顶点的纵坐标依次组成数列{b
n},求
.
查看答案