A、由A和C的度数,利用三角形的内角和定理求出B的度数,从而得到sinA,sinB及sinC的值,再由b的值,利用正弦定理求出a与c的值,本选项只有一解;
B、由a,c及cosB的值,利用余弦定理求出b的值,再利用余弦定理表示出cosC,发现其值小于0,即C为钝角,c为最大边,故本选项只有一解;
C、由a,b及sinA的值,利用正弦定理求出sinB的值,由A为钝角,即为三角形的最大角,得到B只有一解,从而求出c也只有一解;
D、由a,b及sinA,利用正弦定理求出sinB的值,再由B的范围,利用特殊角的三角函数值即可求出B有两解,本选项有两解.
【解析】
A、由∠A=45°,∠C=70°,
得到∠B=65°,又b=10,
根据正弦定理==得:
a=,c=,本选项只有一解;
B、由a=20,c=48,∠B=60°,
根据余弦定理得:b2=a2+c2-2ac•cosB=400+2304-960=1744,
∴b2=1744,
则cosC=<0,得到C为钝角,故c为最大边,
本选项只有一解;
C、由a=7,b=5,∠A=98°,
根据正弦定理=得,sinB=,
由∠A=98°为钝角,即最大角,得到B只能为锐角,
故本选项只有一解;
D、由a=14,b=16,∠A=45°,
根据正弦定理=得:
sinB==,
由0<B<135°,则B有两解,B=arcsin或π-,
本选项有两解,
故选D