满分5 > 高中数学试题 >

用长为18cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问...

用长为18cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
先设设长方体的宽为x(m),利用长方体的体积公式求得其体积表达式,再利用导数研究它的单调性,进而得出此函数的最大值即可. 【解析】 设长方体的宽为x(m),则长为2x(m),高为. 故长方体的体积为V(x)=2x2(4.5-3x)=9x2-6x3(m3). 从而V′(x)=18x-18x2=18x(1-x). 令V′(x)=0,解得x=0(舍去)或x=1,因此x=1. 当0<x<1时,V′(x)>0;当1<x<时,V′(x)<0, 故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值. 从而最大体积V=V′(x)=9×12-6×13(m3),此时长方体的长为2m,高为1.5m. 答:当长方体的长为2m时,宽为1m,高为1.5m时,体积最大,最大体积为3m3.
复制答案
考点分析:
相关试题推荐
如图A、B是椭圆manfen5.com 满分网两个顶点,F1是左焦点,P为椭圆上一点,且PF1⊥OX,OP∥AB.
(1)求椭圆的离心率;
(2)若AB=3,求椭圆的方程.

manfen5.com 满分网 查看答案
已知⊙C:(x-2)2+(y-2)2=2.
(1)求过点A(2-manfen5.com 满分网,0)的⊙C的切线方程;
(2)从点B(-3,3)发出的光线l经x轴反射,其反射光线被⊙C所截得的弦长为2,求入射光线l所在的直线方程.
查看答案
已知命题p:∃x∈R,使得x2-2ax+2a2-5a+4=0,命题q:∀x∈[0,1],都有(a2-4a+3)x-3<0.若“p或q”为真,“p且q”为假,求实数a的取值范围.
查看答案
已知奇函数f(x)和偶函数g(x)的定义域都是(-∞,0)∪(0,+∞),且当x<0时,f’(x)g(x)+f(x)g’(x)>0.若g(-2)=0,则不等式f(x)g(x)>0的解集是    查看答案
若实数x、y满足(x-2)2+y2=3,则manfen5.com 满分网的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.