满分5 > 高中数学试题 >

已知数列{an}的前n项为和Sn,点在直线上.数列{bn}满足bn+2-2bn+...

已知数列{an}的前n项为和Sn,点manfen5.com 满分网在直线manfen5.com 满分网上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设manfen5.com 满分网,数列{cn}的前n和为Tn,求使不等式manfen5.com 满分网对一切n∈N*都成立的最大正整数k的值.
(Ⅲ)设manfen5.com 满分网是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.
(Ⅰ)把点点代入直线方程,进而求得,则Sn可得.进而根据an=Sn-Sn-1求得an.整理bn+2-2bn+1+bn=0得bn+2-bn+1=bn+1-bn,判断出{bn}为等差数列根据b3和b7求得公差,进而根据等差数列的通项公式求得bn. (Ⅱ)先用裂项法求得Tn,进而求得Tn-Tn-1>0,推知Tn单调递增,进而求得Tn的最小值,则k的范围可得. (Ⅲ)把(1)中求得的bn和an代入函数 解析式,分别看m为奇数和偶数时利用f(m+15)=5f(m)求得m,最后综合可得答案. 【解析】 (Ⅰ)由题意,得 故当n≥2时, 注意到n=1时,a1=S1=6,而当n=1时,n+5=6, 所以,an=n+5(n∈N*). 又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn(n∈N*), 所以{bn}为等差数列 于是 而 因此,bn=b3+3(n-3)=3n+2,即bn=3n+2(n∈N*). (Ⅱ)= 所以,= 由于, 因此Tn单调递增,故 令 (Ⅲ) ①当m为奇数时,m+15为偶数. 此时f(m+15)=3(m+15)+2=3m+47,5f(m)=5(m+5)=5m+25, 所以3m+47=5m+25,m=11. ②当m为偶数时,m+15为奇数. 此时f(m+15)=m+15+5=m+20,5f(m)=5(3m+2)=15m+10, 所以(舍去). 综上,存在唯一正整数m=11,使得f(m+15)=5f(m)成立.
复制答案
考点分析:
相关试题推荐
设椭圆manfen5.com 满分网的左右焦点分别为F1、F2A是椭圆C上的一点,且manfen5.com 满分网,坐标原点O到直线AF1的距离为manfen5.com 满分网
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过点Q的直线l交x轴于点F(-1,0),交y轴于点M,若|MQ|=2|QF|,求直线l的斜率.
查看答案
在曲线y=1-x2(x≥0,y≥0)上找一点(x,y),过此点作一切线与x轴、y轴围成一个三角形.
(1)求三角形面积S的最小值及相应的x
(2)当三角形面积达到最小值时,求此三角形的外接圆方程.
查看答案
已知f(x)是定义在R上的函数,且满足下列条件:
①对任意的x、y∈R,f(x+y)=f(x)+f(y);
②当x>0时,f(x)<0.
(1)证明f(x)在R上是减函数;
(2)在整数集合内,关于x的不等式f(x2-4)-f(2x-2a)>f(0)的解集为{1},求实数a的取值范围.
查看答案
已知△ABC中内角A,B,C的对边分别为a,b,c,向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(1)求锐角B的大小;
(2)如果b=2,求△ABC的面积S△ABC的最大值.
查看答案
已知manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)当k为何值时,manfen5.com 满分网
(2)若manfen5.com 满分网的夹角为钝角,求实数k的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.