满分5 > 高中数学试题 >

已知函数f(x)=lnx, (I)若a=-2时,函数h(x)=f(x)-g(x)...

已知函数f(x)=lnx,manfen5.com 满分网
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)在(I)的结论下,设φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(Ⅲ)设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
(I)根据a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,知道h′(x)在其定义域内大于等于零,得到一个关于b的不等式,解此不等式即得b的取值范围; (II)先设t=ex,将原函数化为关于t的二次函数,最后将原函数φ(x)的最小值问题转化成二次函数在某区间上的最值问题即可; (III)先假设存在点R,使C1在M处的切线与C2在N处的切线平行,利用导数的几何意义求出切线的斜率进而得出切线的方程,后利用斜率相等求出R的横坐标,如出现矛盾,则不存在;若不出现矛盾,则存在. 【解析】 (I)依题意:h(x)=lnx+x2-bx. ∵h(x)在(0,+∞)上是增函数, ∴对x∈(0,+∞)恒成立, ∴,∵x>0,则. ∴b的取值范围是. (II)设t=ex,则函数化为y=t2+bt,t∈[1,2]. ∵. ∴当,即时,函数y在[1,2]上为增函数, 当t=1时,ymin=b+1;当1<-<2,即-4<b<-2时,当t=-时,; ,即b≤-4时,函数y在[1,2]上是减函数, 当t=2时,ymin=4+2b. 综上所述: (III)设点P、Q的坐标是(x1,y1),(x2,y2),且0<x1<x2. 则点M、N的横坐标为. C1在点M处的切线斜率为. C2在点N处的切线斜率为. 假设C1在点M处的切线与C2在点N处的切线平行,则k1=k2. 即.则 =, ∴设,则,(1) 令,则, ∵u>1,∴r′(u)>0, 所以r(u)在[1,+∞)上单调递增, 故r(u)>r(1)=0,则,与(1)矛盾!
复制答案
考点分析:
相关试题推荐
把自然数按上小下大、左小右大的原则排成如图的三角形数表(每行比上一行多一个数).设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数的第j个数(如a42=8).
(1)试用i表示aii(不要求证明);
(2)若aij=2008,求i,j的值;
(3)记三角形数表从上往下数第n行的各数之和为bn,令manfen5.com 满分网,若数列{cn}的前n项和为Tn,求Tn

manfen5.com 满分网 查看答案
某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元).
(Ⅰ)写出y与x的函数关系式;
(Ⅱ)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
查看答案
已知函数manfen5.com 满分网满足manfen5.com 满分网
(1)求常数c的值;(2)解不等式f(x)<2.
查看答案
如图,△ACD是等边三角形,△ABC是等腰直角三角形∠ACB=90°,BD交AC于E,AB=2.
(Ⅰ)求cos∠CBE的值;(Ⅱ)求AE.
manfen5.com 满分网 查看答案
已知manfen5.com 满分网,且manfen5.com 满分网
(1)求manfen5.com 满分网的值;   
(2)求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.