如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横纵坐标分别对应数列{an}(n∈N*)的前12项,如下表所示:| a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 |
| x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | x5 | y5 | x6 | y6 |
.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a2)2-8≤0,所以a1+a2
.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为 .
查看答案
,则函数y=f(x)的草图为 .
查看答案
+cosx,则f(x)取得极值时的x值为 .
查看答案
