满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠AB...

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(I)证明:CD⊥AE;
(II)证明:PD⊥平面ABE;
(III)求二面角A-PD-C的大小.

manfen5.com 满分网
(I)由题意利用线面PA⊥底面ABCD得线线PA⊥CD,进而得线面CD⊥平面PAC,即可得证; (II)由题意可得AE⊥PC,由(I)知,AE⊥CD,进而得到AE⊥平面PCD,在由线线垂直得PD⊥平面ABE; (III)因为AE⊥平面PCD,AM在平面PCD内的射影是EM,则EM⊥PD.因此∠AME是二面角A-PD-C的平面角,然后再在三角形中求出即可. 【解析】 (I)证明:在四棱锥P-ABCD中, 因PA⊥底面ABCD,CD⊂平面ABCD,故PA⊥CD. ∵AC⊥CD,PA∩AC=A, ∴CD⊥平面PAC. 而AE⊂平面PAC, ∴AE⊥CD. (II)证明:由PA=AB=BC,∠ABC=60°,可得AC=PA. ∵E是PC的中点,∴AE⊥PC. 由(I)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD. 而PD⊂平面PCD,∴AE⊥PD. ∵PA⊥底面ABCD,PD在底面ABCD内射影是AD,AB⊥AD,∴AB⊥PD. 又AB∩AE=A,综上得PD⊥平面ABE. (III)过点A作AM⊥PD,垂足为M,连接EM. 由(II)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则EM⊥PD. 因此∠AME是二面角A-PD-C的平面角. 由已知,得∠CAD=30°.设AC=a,可得. 在Rt△ADP中,∵AM⊥PD,∴AM.PD=PA.AD.则. 在Rt△AEM中,. 所以二面角A-PD-C的大小是.
复制答案
考点分析:
相关试题推荐
设向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,若manfen5.com 满分网
求:(1)manfen5.com 满分网的值;
(2)manfen5.com 满分网的值.
查看答案
数列{an}满足an=2an-1+2n-1(n≥2),其中a3=25.若存在一个实数λ,使得manfen5.com 满分网为等差数列,则λ=    查看答案
若函数f(x)=min{-x+2,log2x},其中min{p,q}表示p,q两者中的较小者,则不等式f(x)<-2的解集为    查看答案
有一道解三角形的题目,因纸张破损有一个条件模糊不清,具体如下:“在△ABC中,已知manfen5.com 满分网    ,求角A.”经推断,破损处的条件为三角形一边的长度,且答案提示manfen5.com 满分网.试在横线上将条件补充完整. 查看答案
根据表格中的数据,可以判定方程ex-x-2=0的一个解所在的区间为(k,k+1)(k∈N),则k的值为   
x-1123
ex0.3712.727.3920.09
x+212345
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.