已知数列{a
n}中,a
1=1,且点P(a
n,a
n+1)(n∈N
*)在直线x-y+1=0上.
(1)求数列{a
n}的通项公式;
(2)若函数
,求函数f(n)的最小值;
(3)设
表示数列{b
n}的前项和.试问:是否存在关于n的整式g(n),使得S
1+S
2+S
3+…+S
n-1=(S
n-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
考点分析:
相关试题推荐
已知直线l的方程为x=-2,且直线l与x轴交于点M,圆O:x
2+y
2=1与x轴交于A,B两点.
(1)过M点的直线l
1交圆于P、Q两点,且圆孤PQ恰为圆周的
,求直线l
1的方程;
(2)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;
(3)过M点作直线l
2与圆相切于点N,设(2)中椭圆的两个焦点分别为F
1,F
2,求三角形△NF
1F
2面积.
查看答案
已知函数
,常数a>0.
(1)设m•n>0,证明:函数f(x)在[m,n]上单调递增;
(2)设0<m<n且f(x)的定义域和值域都是[m,n],求常数a的取值范围.
查看答案
如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连接BC′,证明:BC′∥面EFG.
查看答案
已知向量a=(sin(
+x),
cosx),b=(sinx,cosx),f(x)=a•b.
(1)求f(x)的最小正周期和单调增区间;
(2)如果三角形ABC中,满足f(A)=
,求角A的值.
查看答案
三位同学合作学习,对问题“已知不等式xy≤ax
2+2y
2对于x∈[1,2],y∈[2,3]恒成立,求a的取值范围”提出了各自的解题思路.
甲说:“可视x为变量,y为常量来分析”.
乙说:“不等式两边同除以x
2,再作分析”.
丙说:“把字母a单独放在一边,再作分析”.
参考上述思路,或自已的其它解法,可求出实数a的取值范围是
.
查看答案