满分5 > 高中数学试题 >

已知函数,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,...

已知函数manfen5.com 满分网,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式;
(3)在(2)的条件下,若对任意的正整数n,在区间manfen5.com 满分网内,总存在m+1个数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.
解此题的第一个突破点是第一(1)用导数的符号为正求单调区间,(2)求过切点的切线方程,找出两切点关系,再利用两点间的距离公式求解即可,(3)利用函数的单调性转化为恒成立问题. 【解析】 (1)当,解得x>,或x<-. ∴函数f(x)有单调递增区间为, (2)设M、N两点的横坐标分别为x1、x2, ∵,∴切线PM的方程为:. 又∵切线PM过点P(1,0),∴有. 即x12+2tx1-t=0.(1) 同理,由切线PN也过点(1,0),得x22+2tx2-t=0.(2) 由(1)、(2),可得x1,x2是方程x2+2tx-t=0的两根, ∴ 把(*)式代入,得, 因此,函数g(t)的表达式为g(t)=(t>0) (3)易知g(t)在区间上为增函数, ∴g(2)≤g(ai)(i=1,2,,m+1). 则m•g(2)≤g(a1)+g(a2)++g(am). ∵g(a1)+g(a2)++g(am)<g(am+1)对一切正整数n成立, ∴不等式m•g(2)<g(n+)对一切的正整数n恒成立, 即m<对一切的正整数n恒成立 ∵, ∴. ∴ 由于m为正整数,∴m≤6.又当m=6时,存在a1=a2═am=2,am+1=16,对所有的n满足条件. 因此,m的最大值为6.
复制答案
考点分析:
相关试题推荐
已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)若函数manfen5.com 满分网,求函数f(n)的最小值;
(3)设manfen5.com 满分网表示数列{bn}的前项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
查看答案
已知直线l的方程为x=-2,且直线l与x轴交于点M,圆O:x2+y2=1与x轴交于A,B两点.
(1)过M点的直线l1交圆于P、Q两点,且圆孤PQ恰为圆周的manfen5.com 满分网,求直线l1的方程;
(2)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;
(3)过M点作直线l2与圆相切于点N,设(2)中椭圆的两个焦点分别为F1,F2,求三角形△NF1F2面积.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,常数a>0.
(1)设m•n>0,证明:函数f(x)在[m,n]上单调递增;
(2)设0<m<n且f(x)的定义域和值域都是[m,n],求常数a的取值范围.
查看答案
如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连接BC′,证明:BC′∥面EFG.
manfen5.com 满分网
查看答案
已知向量a=(sin(manfen5.com 满分网+x),manfen5.com 满分网cosx),b=(sinx,cosx),f(x)=a•b.
(1)求f(x)的最小正周期和单调增区间;
(2)如果三角形ABC中,满足f(A)=manfen5.com 满分网,求角A的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.