满分5 > 高中数学试题 >

在复平面内,复数z=i(1+2i)对应的点位于( ) A.第一象限 B.第二象限...

在复平面内,复数z=i(1+2i)对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,即可确定复数z所在象限. 【解析】 ∵z=i(1+2i)=i+2i=-2+i, ∴复数z所对应的点为(-2,1), 故选B
复制答案
考点分析:
相关试题推荐
设函数f(x)=x|x-a|+b
(1)求证:f(x)为奇函数的充要条件是a2+b2=0.
(2)设常数b<2manfen5.com 满分网-3,且对任意x∈[0,1],f(x)<0恒成立,求实数a的取值范围.
查看答案
定义在R上的函数f(x)满足f(x+2)=-f(x),且当x∈[-1,1]时,f(x)=x3
(1)求f(x)在[1,5]上的表达式;
(2)若A={x|f(x)>a,x∈R},且A≠ф,求实数a的取值范围.
查看答案
为合理用电缓解电力紧张,某市将试行“峰谷电价”计费方法,在高峰用电时段,即居民户每日8时至22时,电价每千瓦时为0.56元,其余时段电价每千瓦时为0.28元.而目前没有实行“峰谷电价”的居民户电价为每千瓦时0.53元.若总用电量为S千瓦时,设高峰时段用电量为x千瓦时.
(1)写出实行峰谷电价的电费y1=g1(x)及现行电价的电费y2=g2(S)的函数解析式及电费总差额f(x)=y2-y1的解析式;
(2)对于用电量按时均等的电器(在全天任何相同长的时间内,用电量相同),采用峰谷电价的计费方法后是否能省钱?说明你的理由..
查看答案
已知函数f(x)=-x3+3x.
(1)判断f(x)的奇偶性,证明你的结论;
(2)当a在何范围内取值时,关于x的方程f(x)=a在x∈(-1,1]上有解?
查看答案
已知函数manfen5.com 满分网(a>0且a≠1).
(1)求f(x)的定义域;
(2)判断f(x)的单调性,写出你的结论,不要求证明.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.