利用正弦定理化简已知的等式,得到三边的关系式,再利用余弦定理表示出cosC,把得到的三边关系式变形后代入求出cosC的值,根据C为三角形的内角,利用同角三角函数间的基本关系求出sinC的值,由ab及sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.
【解析】
利用正弦定理化简sin2A+sin2B-sinAsinB=sin2C,
得:a2+b2-ab=c2,即a2+b2-c2=ab,
∴根据余弦定理得:cosC==,
∵C为三角形的内角,
∴sinC==,又ab=4,
则S△ABC=ab•sinC=.
故答案为: