满分5 > 高中数学试题 >

定义在R上的偶函数y=f(x)满足: ①对x∈R都有f(x+6)=f(x)+f(...

定义在R上的偶函数y=f(x)满足:
①对x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③当x1,x2∈[0,3]且x1≠x2时,都有manfen5.com 满分网>0则
(1)f(2009)=   
(2)若方程f(x)=0在区间[a,6-a]上恰有3个不同实根,实数a的取值范围是   
(1)根据恒等式和偶函数的定义,以-x代x,求出函数的周期是12,又因2009=167×12+5,故f(2009)就是f(5)的值. (2)根据当x1,x2∈[0,3]且x1≠x2时,都有>0,可知函数在[0,3]上单调递增,又f(x)为偶函数,故在[-3,0]上为减函数.又f(3)=0,故可求解. 【解析】 由题意,(1)因为y=f(x)是R上的偶函数,所以f(x)=f(-x),因为f(x+6)=f(x)+f(3), 所以f(-x+6)=f(-x)+f(3)=f(x)+3=f(x+6),所以f(x)关于x=6对称, 因为f(6-x)=f(6+x),所以f(-x)=f(x+12)=f(x),所以f(x)是以12为周期的函数, ∴f(2009)=f(5)=f(-5)=-1;  (2)根据当x1,x2∈[0,3]且x1≠x2时,都有>0,可知函数在[0,3]上单调递增 又f(x)为偶函数,故在[-3,0]上为减函数. 令x=-3,则由f(x+6)=f(x)+f(3)得f(3)=f(-3)+f(3)=2f(3),故f(3)=0 因为f(x+6)=f(x)+f(3),所以f(3)=f(-3)+f(3)=0,f(x)关于x=6对称,所以f(9)=0,因为y=f(x)是R上的偶函数,f(-9)=0,f(-3)=0,因 为f(x)在[0,3]上是增函数,所以[0,3]上只有一解为3,对称性[-3,0]只有一解为-3,因为f(x+6)=f(x)+f(3),且f(x)在[0,3]上是增函数,所以f(x)在[6,9]上是增函数,所以[6,9]上只有一解为9,因为f(x)关于x=6对称,所以f(x)在[3,6]上只有一解为3,由对称性知[-9,-6],[-6,-3]各只有一解-9,-3, 要使方程f(x)=0在区间[a,6-a]上恰有3个不同实根,则a>-9,6-a≤9 ∴实数a的取值范围是(-9-3] 故答案为-1,(-9-3]
复制答案
考点分析:
相关试题推荐
已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示,则方程f[g(x)]=0有且仅有    个根;方程f[f(x)]=0有且仅有    个根.
manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知F1,F2是椭圆C:manfen5.com 满分网(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为    查看答案
把形如M=mn(m,n∈N*)的正整数表示成各项都是整数,公差为2的等差数列前n项的和,称作“对M的m项分划”,例如:9=32=1+3+5称作“对9的3项分划”;64=43=13+15+17+19称作“对64的4项分划”,据此对324的18项分划中最大的数是     查看答案
若函数f(x)=2x2-lnx在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是    查看答案
在算式“1×□+4×□=30”的两个□中,分别填入两个自然数,使它们的倒数之和最小,则这两个数的和为    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.