满分5 > 高中数学试题 >

已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上...

manfen5.com 满分网已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作MN⊥FA,垂足为N,求点N的坐标;
(3)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.
(Ⅰ)抛物线的准线为 ,于是 ,p=2,由此可知抛物线方程为y2=4x. (Ⅱ)由题意得B,M的坐标,,,直线FA的方程,直线MN的方程,由此可知点N的坐标即可; (Ⅲ)由题意得,圆M的圆心坐标为(0,2),半径为2.当m=4时,直线AP的方程为x=4,此时,直线AP与圆M相离;当m≠4时,写出直线AP的方程,圆心M(0,2)到直线AP的距离,由此可判断直线AP与圆M的位置关系. 【解析】 (1)抛物线,∴p=2. ∴抛物线方程为y2=4x. (2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2), 又∵F(1,0),∴,∴, 则FA的方程为y=(x-1),MN的方程为.*k*s*5*u 解方程组,∴. (3)由题意得,圆M的圆心是点(0,2),半径为2. 当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离, 当m≠4时,直线AK的方程为,即为4x-(4-m)y-4m=0, 圆心M(0,2)到直线AK的距离,令d>2,解得m>1∴当m>1时,直线AK与圆M相离; 当m=1时,直线AK与圆M相切; 当m<1时,直线AK与圆M相交.
复制答案
考点分析:
相关试题推荐
等差数列{an}的前n项和为Sn,且S5=45,S6=60.
(1)求{an}的通项公式an.(2)若数列{an}满足bn+1-bn=an(n∈N*)且b1=3,求manfen5.com 满分网的前n项和Tn
查看答案
经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数f(t)(万人)与时间t(天)的函数关系近似满足manfen5.com 满分网,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|.
(Ⅰ)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N)的函数关系式;
(Ⅱ)求该城市旅游日收益的最小值(万元).
查看答案
已知manfen5.com 满分网manfen5.com 满分网,其中ω>0,若函数manfen5.com 满分网,且函数f(x)的图象与直线y=2相邻两公共点间的距离为π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C、的对边,且manfen5.com 满分网,f(A)=1,求△ABC的面积.
查看答案
定义在R上的偶函数y=f(x)满足:
①对x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③当x1,x2∈[0,3]且x1≠x2时,都有manfen5.com 满分网>0则
(1)f(2009)=   
(2)若方程f(x)=0在区间[a,6-a]上恰有3个不同实根,实数a的取值范围是    查看答案
已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示,则方程f[g(x)]=0有且仅有    个根;方程f[f(x)]=0有且仅有    个根.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.