先根据题意和椭圆定义可知|MF2|=|OF2|=c,|MF1|+|MF2|=2a,|F1F2|=2c 进而根据勾股定理建立等式求得e,利用圆心到直线的距离判断直线与圆的位置关系.
【解析】
由题意得:|MF2|=|OF2|=c
|MF1|+|MF2|=2a
|F1F2|=2c
直角三角形MF1F2中
|MF1|2+|MF2|2=|F1F2|2
即(2a-c)2+c2=4c2
整理得2a2-2ac-c2=0
即e2+2e-2=0,解得e=
圆心到椭圆的右准线l的距离为,圆的半径为c
∴
∴椭圆的右准线l与圆F2相交
故答案为:相交