探究函数
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数
,(x>0)在区间(0,2)上递减,则在______上递增;
(2)当x=______时,
,(x>0)的最小值为______;
(3)试用定义证明
,(x>0)在区间(0,2)上递减;
(4)函数
,(x<0)有最值吗?是最大值还是最小值?此时x为何值?
考点分析:
相关试题推荐
函数f(x)对,都有f(x+y)=f(x)+f(y)
(1)求f(0)的值;
(2)判断并证明f(x)的奇偶性;
(3)若f(x)在定义域上是单调函数且f(1)=2,解不等式f(x)≥f(1-2x)-4.
查看答案
已知函数f(x)=x
2-(k-2)x+k
2+3k+5有两个零点:
(1)若函数的两个零点是-1和-3,求k的值;
(2)若函数的两个零点是α和β,求α
2+β
2的取值范围.
查看答案
我县有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40).试求f(x)和g(x);
(2)问:小张选择哪家比较合算?为什么?
查看答案
如图,正方体ABDC-A
1B
1C
1D
1,点M、N分别在 AD
1、AC
1上
(1)若AM=MD
1,AN=NC
1,试判断直线MN与A
1C
1的位置关系;并求MN与A
1C
1所成的角;
(2)若AM=2MD
1,AN=2NC
1,试判断直线MN与平面A
1B
1AB的关系,并证明.
查看答案
已知函数f(x)=-x(x-a),x∈[a,1]
(1)若函数f(x)在区间[a,-1]上是单调函数,求a的取值范围;
(2)求函数f(x)在区间[a,-1]上的最大值g(a).
查看答案