已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(1)求证:EF⊥平面PAD;
(2)求平面EFG与平面ABCD所成锐二面角的大小;
(3)若M为线段AB上靠近A的一个动点,问当AM长度等于多少时,直线MF与平面EFG所成角的正弦值等于
?
考点分析:
相关试题推荐
已知椭圆C的左、右焦点坐标分别是
,
,离心率是
,直线y=t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当T变化时,求y的最大值.
查看答案
已知函数
.求
(1)函数f(x)的最小正周期;
(2)函数f(x)的单调递减区间;
(3)函数f(x)在区间
上的最值.
查看答案
设P是△ABC所在平面内一点,若
且
则下列正确的命题序号是
.
①P是△ABC的重心 ②△ABC是锐角三角形 ③△ABC的三边长有可能是三个连续的整数 ④∠C=2∠A.
查看答案
若定义在区间D上的函数f(x)对D上的任意n个值x
1,x
2,…,x
n,总满足
[f(x
1)+f(x
2)+…+f(x
n)]≤f
(
),则称f(x)为D上的凸函数.已知函数y=sinx在区间(0,π)上是“凸函数”,则在△ABC中,sinA+sinB+sinC的最大值是
.
查看答案