满分5 > 高中数学试题 >

是否存在常数a,b,c使得等式1•22+2•32+…+n(n+1)2=(an2+...

是否存在常数a,b,c使得等式1•22+2•32+…+n(n+1)2=manfen5.com 满分网(an2+bn+c)对于一切正整数n都成立?并证明你的结论.
先假设存在符合题意的常数a,b,c,再令n=1,n=2,n=3构造三个方程求出a,b,c,再用用数学归纳法证明成立,证明时先证:(1)当n=1时成立.(2)再假设n=k(k≥1)时,成立,即1•22+2•32++k(k+1)2=(3k2+11k+10),再递推到n=k+1时,成立即可. 证明:假设存在符合题意的常数a,b,c, 在等式1•22+2•32++n(n+1)2 =(an2+bn+c)中, 令n=1,得4=(a+b+c)① 令n=2,得22=(4a+2b+c)② 令n=3,得70=9a+3b+c③ 由①②③解得a=3,b=11,c=10, 于是,对于n=1,2,3都有 1•22+2•32++n(n+1)2=(3n2+11n+10)(*)成立. 下面用数学归纳法证明:对于一切正整数n,(*)式都成立. (1)当n=1时,由上述知,(*)成立. (2)假设n=k(k≥1)时,(*)成立, 即1•22+2•32++k(k+1)2 =(3k2+11k+10), 那么当n=k+1时, 1•22+2•32++k(k+1)2+(k+1)(k+2)2 =(3k2+11k+10)+(k+1)(k+2)2 =(3k2+5k+12k+24) =[3(k+1)2+11(k+1)+10], 由此可知,当n=k+1时,(*)式也成立. 综上所述,当a=3,b=11,c=10时题设的等式对于一切正整数n都成立.
复制答案
考点分析:
相关试题推荐
某单位举行抽奖活动,每个员工有一次抽奖机会.抽奖箱中放有6个相同的乒乓球,其中三个球上标有数字1,两个球上标有数字2,还有一个球上标有数字3,每个抽奖者从中一次抽出两个球,记两个球上所标数字的和为X,奖项及相应奖品价值如下表:
奖项一等奖二等奖三等奖
X54或32
奖品价值(元)20010050
(1)求某员工获一等奖的概率;
(2)求某员工所获奖品价值Y(元)的概率分布;
(3)该单位有员工30人,试估计该单位需要准备价值多少元的奖品?
查看答案
某研究机构为了研究人的脚的大小与身高之问的关系,随机抽测了20人,得到如下数据:
序号12345678910
身高x(厘米)192164172177176159171166182166
脚长y(码)48384043443740394639
序号11121314151617181920
身高x(厘米)169178167174168179165170162170
脚长y(码)43414043404438423941
(Ⅰ)若“身高大于l75厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的2×2列联表:
    高个  非高个    合计
大脚
非大脚    12
合计    20
(Ⅱ)根据题(I)中表格的数据,若按99%的可靠性要求,能否认为脚的大小与身高之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:①抽到12号的概率;②抽到“无效序号(超过20号)”的概率.
查看答案
奥运会火炬传递准备在某省8个城市中选取6个制定传递路线,满足下列条件的方法各有多少种?
(1)甲乙两个城市只选1个,有多少种方法?有多少条不同的路线?
(2)甲乙两个城市至少选1个,有多少种方法?有多少条不同的路线?
查看答案
已知在manfen5.com 满分网的展开式中,第4项是常数项.
(1)求第6项的二项式系数;
(2)若Cnr-1=Cn3r-2,求r的值.
查看答案
若f(z)=manfen5.com 满分网+|z|,z1=3+4i,z2=-2+i,求f的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.