(1)设出P的坐标为(x,y),再由M和N的坐标,表示出,,及,根据成等差数列,利用等差数列的性质列出关系式,利用平面向量的数量积运算法则化简后,即可得到曲线C的方程;
(2)设切线方程的斜率为k,根据A的坐标表示出切线的方程,利用点到直线的距离公式表示出圆心到所设直线的距离d,由直线与圆相切,得到d=r列出关于k的方程,求出方程的解得到k的值,进而确定出切线方程,设M和N为对应切线的切点,根据垂径定理,由|OA|,|OM|,利用勾股定理求出|AM|的长,以A为圆心,|AM|长为半径写出圆A的标准方程,MN即为两圆的公共弦,利用两圆的方程相减即可求出公共弦MN所在的直线方程.
【解析】
(1)设动点P(x,y),
则,
,
,
于是由得:2(x2+y2-1)=2(1+x)+2(1-x),
化简得:x2+y2=3即为所求的轨迹方程;
(2)设切线方程为y-4=k(x-2),即kx-y+4-2k=0,
由,
所以切线方程为:,
设M、N为对应切线的切点,则0A2=OM2+AM2,所以,
所以以A为圆心AM为半径作圆其方程为(x-2)2+(y-4)2=17,
则MN即为两圆的公共弦,
所以两圆方程相减得到公共弦MN方程为:2x+4y-3=0.