满分5 > 高中数学试题 >

如图,已知圆,经过椭圆(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)...

manfen5.com 满分网如图,已知圆manfen5.com 满分网,经过椭圆manfen5.com 满分网(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(m>a)倾斜角为manfen5.com 满分网的直线1交椭圆于C,D两点
(1)求椭圆的方程
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
(1)依据题意可求得F,B的坐标,求得c和b,进而求得a,则椭圆的方程可得. (2)设出直线l的方程,与椭圆方程联立消去,利用判别式大于0求得m的范围,设出C,D的坐标,利用韦达定理表示出x1+x2和 x1x2,进而利用直线方程求得y1y2,表示出和,进而求得•的表达式,利用F在圆E的内部判断出•<0求得m的范围,最后综合可求得md 范围. 【解析】 (1)过点F、B, ∴F(2,0),, 故椭圆的方程为 (2)直线l: 消y得2x2-2mx+(m2-6)=0 由△>0⇒, 又⇒ 设C(x1,y1)、D(x2,y2),则x1+x2=m,,,, ∴ ∵F在圆E的内部,∴, 又⇒.
复制答案
考点分析:
相关试题推荐
某公司为了实现2011年1000万元利润的目标,准备制定一个激励销售人员的奖励方案:销售利润达到10万元时,按销售利润进行奖励,且奖金数额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过利润的25%,现有三个奖励模型:y=0.025x,y=1.003xmanfen5.com 满分网,问其中是否有模型能完全符合公司的要求?说明理由.(参考数据:1.003600≈6)
查看答案
已知矩形ABCD的对角线交于点P(2,0),边AB所在直线的方程为x-3y-6=0,点(-1,1)在边AD所在的直线上,
(1)求矩形ABCD的外接圆的方程;
(2)已知直线l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求证:直线l与矩形ABCD的外接圆恒相交,并求出相交的弦长最短时的直线l的方程.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(Ⅰ)若f(x)=1,求manfen5.com 满分网的值;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足manfen5.com 满分网,求f(2B)的取值范围.
查看答案
已知函数f(x)满足:①定义域为R;②对任意x∈R,有f(x+2)=2f(x);③当x∈[-1,1]时,f(x)=-|x|+1.则方程f(x)=log4|x|在区间[-10,10]内的解的个数是    查看答案
已知命题p:对一切x∈[0,1],k•4x-k•2x+1+6(k-5)≠0,若命题p是假命题,则实数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.