①由x|x|是奇函数,bx是奇函数,c是偶函数,知函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;②由y=2-x(x>0),知0<y<1,x=-log2y,x,y互换,得函数y=2-x(x>0)的反函数是y=-log2x(0<x<1);③由,数列{an}满足an=f(n),n∈N*,知f(n)=,所以{an}是单调递减数列;④y=f(x-1)是偶函数,它的图象关于y轴(x=0)对称.变成y=f(x),需要向左平移1个单位. 故:y=f(x)关于x=-1对称.
【解析】
①∵x|x|是奇函数,bx是奇函数,c是偶函数,
∴函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
故①成立;
②由y=2-x(x>0),知0<y<1,x=-log2y,
x,y互换,得函数y=2-x(x>0)的反函数是y=-log2x(0<x<1);
故②成立;
③由,数列{an}满足an=f(n),n∈N*,
知f(n)=,
∵n+1≥2,
∴f(n)单调减,
∴{an}是单调递减数列.
故③成立;
④y=f(x-1)是偶函数,它的图象关于y轴(x=0)对称.
变成y=f(x),需要向左平移1个单位.
故:y=f(x)关于x=-1对称.
故④不成立.
故答案为:①②③.