(I)求出f′(x),因为x1、x2是函数f(x)的两个极值点,而x1=-1,x2=2所以得到f′(-1)=0,f′(2)=0代入求出a、b即可得到函数解析式;
(II)因为x1、x2是导函数f′(x)=0的两个根,利用根与系数的关系对已知进行变形得到a和b的等式,求出b的范围,设p(a)=3a2(6-a),求出其导函数,利用导数研究函数的增减性得到p(a)的极大值,开方可得b的最大值;
(III)因为x1,x2是方程f'(x)=0的两根,所以f'(x)=3a(x-x1)(x-x2).根据两个之积和x2=a求出x1,将x1和导函数代入到g(x)=f'(x)-a(x-x1)求出g(x)的绝对值,根据x的范围化简绝对值,再利用二次函数最值的方法得证即可.
解 (I)∵f(x)=ax3+bx2-a2x(a>0)
∴f'(x)=3ax2+2bx-a2(a>0)
依题意有,
∴.
解得,
∴f(x)=6x3-9x2-36x.
(II)∵f'(x)=3ax2+2bx-a2(a>0),
依题意,x1,x2是方程f'(x)=0的两个根,且,
∴(x1+x2)2-2x1x2+2|x1x2|=8.
∴,
∴b2=3a2(6-a).
∵b2≥0,
∴0<a≤6.
设p(a)=3a2(6-a),则p'(a)=-9a2+36a.
由p'(a)>0得0<a<4,由p'(a)<0得a>4.
即:函数p(a)在区间(0,4]上是增函数,在区间[4,6]上是减函数,
∴当a=4时,p(a)有极大值为96,
∴p(a)在(0,6]上的最大值是96,
∴b的最大值为.
(III)证明:∵x1,x2是方程f'(x)=0的两根,
∴f'(x)=3a(x-x1)(x-x2).
∵,x2=a,
∴.
∴
∵x1<x<x2,即.
∴
∴|g(x)|===.
∴|g(x)|成立.