满分5 > 高中数学试题 >

已知M={x|lgx2=0},N={x|2-1<2x+1<22,x∈Z},则M∩...

已知M={x|lgx2=0},N={x|2-1<2x+1<22,x∈Z},则M∩N=   
根据对数和指数的定义,求出集合M,N,从而求出M∩N. 【解析】 由题意M={x|lgx2=0}, ∴M={x|x∈R}, ∵N={x|2-1<2x+1<22,x∈Z}, ∴N={x|x=-1}, ∴M∩N={-1}.
复制答案
考点分析:
相关试题推荐
设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(I)若x1=-1,x2=2,求函数f(x)的解析式;
(II)若manfen5.com 满分网,求b的最大值;
(III)设函数g(x)=f'(x)-a(x-x1),x∈(x1,x2),当x2=a时,求证:manfen5.com 满分网
查看答案
设数列{bn}满足:manfen5.com 满分网,bn+1=bn2+bn
(1)求证:manfen5.com 满分网
(2)若Tn=manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网,对任意的正整数n,3Tn-log2m-5>0恒成立.求m的取值范围.
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的对称轴方程;
(2)当manfen5.com 满分网时,若函数g(x)=f(x)+m有零点,求m的范围;
(3)若manfen5.com 满分网manfen5.com 满分网,求sin(2x)的值.
查看答案
设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,manfen5.com 满分网(x∈R).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>-1,试判断f(x)在(0,1]上的单调性,并证明你的结论
查看答案
等差数列{an}的前n项和为snmanfen5.com 满分网manfen5.com 满分网
(1)求数列{an}的通项an与前n项和为sn
(2)设manfen5.com 满分网(n∈N+),求证:数列{bn}中任意不同的三项都不可能成为等比数列.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.