满分5 > 高中数学试题 >

已知函数f(x)=ln(ex+1)-ax(a>0). (1)若函数y=f(x)的...

已知函数f(x)=ln(ex+1)-ax(a>0).
(1)若函数y=f(x)的导函数是奇函数,求y=f′(x)的值域;
(2)求函数y=f(x)的单调区间.
(1)由已知中函数f(x)=ln(ex+1)-ax我们易求出函数导函数的解析式,根据函数y=f(x)的导函数是奇函数,求出a值后,结合指数函数的性质,即可得到y=f′(x)的值域; (2)由已知中函数f(x)=ln(ex+1)-ax我们易求出函数导函数的解析式(含参数a),分a≥1,0<a<1两种情况进行分类讨论,即可得到函数y=f(x)的单调区间. 【解析】 (1)由已知得. ∵函数y=f(x)的导函数是奇函数. ∴f′(-x)=-f′(x),解得.故,,所以 (2)由(1). 当a≥1时,f′(x)<0恒成立, ∴当a≥1时,函数y=f(x)在R上单调递减; 当0<a<1时,由f′(x)>0得(1-a)(ex+1)>1,即, ∴当内单调递增, 在内单调递减. 故当a≥1时,函数y=f(x)在R上单调递减; 当0<a<1时,内单调递增;在内单调递减.
复制答案
考点分析:
相关试题推荐
某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为
ξ12345
P0.40.20.20.10.1
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.
(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);
(Ⅱ)求η的分布列及期望Eη.
查看答案
设函数f(x)=x|x|+bx+c(b,c∈R),给出如下四个命题:①若c=0,则f(x)为奇函数;②若b=0,则函数f(x)在R上是增函数;③函数y=f(x)的图象关于点(0,c)成中心对称图形;④关于x的方程f(x)=0最多有两个实根.其中正确的命题    查看答案
将直线l1:x+y-1=0、l2:nx+y-n=0、l3:x+ny-n=0(n∈N*,n≥2)围成的三角形面积记为Sn,则manfen5.com 满分网=   
manfen5.com 满分网 查看答案
设a>0,a≠1,函数manfen5.com 满分网有最大值,则不等式loga(x2-5x+7)>0的解集为    查看答案
已知函数manfen5.com 满分网上是减函数,则a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.