满分5 > 高中数学试题 >

已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx...

已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R.
(I)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;
(II)设函数manfen5.com 满分网是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.
(I)因P(x)=f(x)+g(x)=x3+(k-1)x2+(k+5)x-1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出,最后再利用导数求出此函数的值域即可; (II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值. 解析:(I)因P(x)=f(x)+g(x)=x3+(k-1)x2+(k+5)x-1, p′(x)=3x2+2(k-1)x+(k+5), 因p(x)在区间(0,3)上不单调,所 以p′(x)=0在(0,3)上有实数解,且无重根, 由p′(x)=0得k(2x+1)=-(3x2-2x+5), ∴, 令t=2x+1,有t∈(1,7),记, 则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所 以有h(t)∈[6,10),于是, 得k∈(-5,-2],而当k=-2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去, 所以k∈(-5,-2); (II)当x<0时有q′(x)=f′(x)=3x2-2(k2-k+1)x+5; 当x>0时有q′(x)=g′(x)=2k2x+k, 因为当k=0时不合题意,因此k≠0, 下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞) (ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增, 所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B, 因此有k≥5, (ⅱ)当x1<0时,q′(x)在(-∞,0)上单调递减, 所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B, 因此k≤5,综合(ⅰ)(ⅱ)k=5; 当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0, 使得q′(x2)=q′(x1)成立, 因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的; 同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1), 要使q′(x2)=q′(x1)成立,所以k=5满足题意.
复制答案
考点分析:
相关试题推荐
已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若任意的a、b∈[-1,1],当a+b≠0时,总有manfen5.com 满分网
(1)判断函数f(x)在[-1,1]上的单调性,并证明你的结论;
(2)解不等式:manfen5.com 满分网
(3)若f(x)≤m2-2pm+1对所有的x∈[-1,1]恒成立,其中p∈[-1,1](p是常数),试用常数p表示实数m的取值范围.
查看答案
已知定义在正实数集上的函数manfen5.com 满分网,g(x)=3a2lnx+b,其中a>0,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(I)用a表示b,并求b的最大值;
(II)求证:f(x)≥g(x)(x>0).
查看答案
已知函数f(x)=(manfen5.com 满分网x,x∈[-1,1],函数g(x)=f2(x)-2af(x)+3的最小值为h(a).
(1)求h(a)的解析式;
(2)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,请说明理由.
查看答案
已知函数f(x)=ln(ex+1)-ax(a>0).
(1)若函数y=f(x)的导函数是奇函数,求y=f′(x)的值域;
(2)求函数y=f(x)的单调区间.
查看答案
某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为
ξ12345
P0.40.20.20.10.1
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.
(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);
(Ⅱ)求η的分布列及期望Eη.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.