满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn,对一切n∈N*,点(n,Sn)在函数f(x)=x...

设数列{an}的前n项和为Sn,对一切n∈N*,点(n,Sn)在函数f(x)=x2+x的图象上.
(1)求an的表达式;
(2)设manfen5.com 满分网,使得不等式An<a对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由;
(3)将数列{an}依次按1项,2项循环地分为(a1),(a2,a3),(a4),(a5,a6),(a7),(a8,a9),(a10),
…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b100的值;
(4)如果将数列{an}依次按1项,2项,3项,4项循环;分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},提出同(3)类似的问题((3)应当作为特例),并进行研究,你能得到什么样的结论?
(1)由点(n,Sn)在函数f(x)=x2+x的图象上可得Sn=n2+2n利用递推公式 可求; (2)根据(1)求出,利用裂项相消法求出An即可求出使得不等式An<a对一切n∈N*都成立的a; (3)由分组规律知,b2,b4,b6,…b100组成首项为b2=4+6=10,公差d=12的等差数列,利用等差数列的通项公式可求; (4)根据题意,举特例当n是4的整数倍时,求bn的值.根据依次按1项,2项,3项,4项循环,可知数列{an}依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12);(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),…,根据它们的特点即可求得结果. 【解析】 (1)∵点(n,Sn)在函数f(x)=x2+x的图象上, ∴Sn=n2+n. a1=S1=2,当n≥2时,an=Sn-Sn-1=2n(n=1时也成立). ∴an=2n(n∈N*). (2) ==. 依题意,只要. (3)数列{an}依次按1项,2项循环地分为(2),(4,6),(8),(10,12);(14),(16,18);(20),…,每一次循环记为一组.由于每一个循环含有2个括号,故b100是第50组中第2个括号内各数之和. 由分组规律知,b2,b4,b6,…,b100,…组成一个首项b2=4+6=10,公差d=12 的等差数列.  所以b100=10+(50-1)×12=598. (4)当n是4的整数倍时,求bn的值. 数列{an}依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12);(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),… 第4组,第8组,…,第4k(k∈N*)组的第1个数,第2个 数,…,第4个数分别组成一个等差数列, 其首项分别为14,16,18,20.公差均为20.  则第4组,第8组,…,第4k组的各数之和也组成一个等差数列, 其公差为80.   且b4=14+16+18+20=68. 当n=4k时,bn=68+80(k-1)=20n-12.
复制答案
考点分析:
相关试题推荐
国际上常用恩格尔系数(记作n)来衡量一个国家和地区人民生活水平的状况,它的计算公式为:manfen5.com 满分网,各种类型家庭的n如下表所示:
庭类型贫困温饱小康富裕最富裕
nn>60%50%<n≤60%40%<n≤50%30%<n≤40%n≤30%
根据某市城区家庭抽样调查统计,2003年初至2007年底期间,每户家庭消费支出总额每年平均增加720元,其中食品消费支出总额每年平均增加120元.
(1)若2002年底该市城区家庭刚达到小康,且该年每户家庭消费支出总额9600元,问2007年底能否达到富裕?请说明理由.
(2)若2007年比2002年的消费支出总额增加36%,其中食品消费支出总额增加12%,问从哪一年底起能达到富裕?请说明理由.
查看答案
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
(1)求直线AE与平面CDE所成角的大小(用反三角函数值表示);
(2)求多面体ABCDE的体积.

manfen5.com 满分网 查看答案
杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14与第15个数的比为manfen5.com 满分网,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k(m,k∈N×)的数学公式表示上述结论,并给予证明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11阶杨辉三角

查看答案
设△ABC的内角∠A、∠B、∠C所对的边长分别为a、b、c,且a2+b2-c2=2absin2C,求角C的大小.
查看答案
为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为aa1a2,ai∈{0,1}(i=0,1,2),传输信息为haa1a2h1,其中h=a⊕a1,h1=h⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )
A.11010
B.01100
C.10111
D.00011
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.