满分5 > 高中数学试题 >

如图,圆内接四边形ABCD的边长分别为AB=2,BC=6,CD=DA=4. (1...

如图,圆内接四边形ABCD的边长分别为AB=2,BC=6,CD=DA=4.
(1)求弦BD的长;
(2)设点P是弧BCD上的一动点(不与B,D重合)分别以PB,PD为一边作正三角形PBE、正三角形PDF,求这两个正三角形面积和的取值范围.

manfen5.com 满分网
(1)由余弦定理,在△ABD中,BD2=AB2+AD2-2AB•ADcos∠BAD=20-16cos∠BAD,在△CDB中 BD2=BC2+CD2-2BC•CDcos∠BCD=52-48cos∠BCD 结合cos∠BCD=-cos∠BAD 可求∠BAD,代入可求BD (2)设∠PBD=θ,θ∈0,120°),由可表示三角形的面积之和 =,结合可求y得范围 【解析】 (1)由余弦定理,在△ABD中,BD2=AB2+AD2-2AB•ADcos∠BAD=20-16cos∠BAD 在△CDB中 BD2=BC2+CD2-2BC•CDcos∠BCD=52-48cos∠BCD ∴20-16cos∠BAD=52-48cos∠BCD ∵cos∠BCD=-cos∠BAD∴64cos∠BAD=-32,cos∠BAD=-, ∴∠BAD=120° 代入上式可得, ∴(6分) (2)设∠PBD=θ,θ∈0,120°) (8分) =(10分) ∵ ∴(12分)
复制答案
考点分析:
相关试题推荐
某种出口产品的关税税率t,市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:p=2(1-kt)(x-b)2,其中k,b均为常数.当关税税率为75%时,若市场价格为5千元,则市场供应量均为1万元;若市场价格为7千元,则市场供应量约为2万件.
(1)试确定k、b的值;
(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:q=2-x.p=q时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.
查看答案
设数列{an}的首项manfen5.com 满分网,前n项和为Sn,且满足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an
(Ⅱ)求满足manfen5.com 满分网的所有n的值.
查看答案
设函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若manfen5.com 满分网,是否存在实数m,使函数f(x)的值域恰为manfen5.com 满分网?若存在,请求出m的取值;若不存在,请说明理由.
查看答案
已知函数y=lg(ax2-2x+2).
(1)若函数y=lg(ax2-2x+2)的值域为R,求实数a的取值范围;
(2)若a=1且x≤1,求y=lg(ax2-2x+2)的反函数f-1(x);
(3)若方程lg(ax2-2x+2)=1在manfen5.com 满分网内有解,求实数a的取值范围.
查看答案
观察下列式子:manfen5.com 满分网,则可以猜想的结论为:当n∈N且n≥2时,恒有    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.