满分5 > 高中数学试题 >

设函数f(x)=2ln(x-1)-(x-1)2. (1)求函数f(x)的单调递增...

设函数f(x)=2ln(x-1)-(x-1)2
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异的实根,求实数a的取值范围.
(1)确定出函数的定义域是解决本题的关键,利用导数作为工具,求出该函数的单调递增区间即为f'(x)>0的x的取值区间; (2)方法一:利用函数思想进行方程根的判定问题是解决本题的关键.构造函数,研究构造函数的性质尤其是单调性,列出该方程有两个相异的实根的不等式组,求出实数a的取值范围. 方法二:先分离变量再构造函数,利用函数的导数为工具研究构造函数的单调性,根据题意列出关于实数a的不等式组进行求解. 【解析】 (1)函数f(x)的定义域为(1,+∞), ∵, ∵x>1,则使f'(x)>0的x的取值范围为(1,2), 故函数f(x)的单调递增区间为(1,2). (2)方法1:∵f(x)=2ln(x-1)-(x-1)2, ∴f(x)+x2-3x-a=0⇔x+a+1-2ln(x-1)=0. 令g(x)=x+a+1-2ln(x-1), ∵g'(x)=1-,且x>1, 由g'(x)>0得x>3,g'(x)<0得1<x<3. ∴g(x)在区间[2,3]内单调递减,在区间[3,4]内单调递增, 故f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异实根⇔ 即解得:2ln3-5≤a<2ln2-4. 综上所述,a的取值范围是[2ln3-5,2ln2-4). 方法2:∵f(x)=2ln(x-1)-(x-1)2, ∴f(x)+x2-3x-a=0⇔x+a+1-2ln(x-1)=0. 即a=2ln(x-1)-x-1,令h(x)=2ln(x-1)-x-1, ∵h'(x)=,且x>1, 由h'(x)>0得1<x<3,h'(x)<0得x>3. ∴h(x)在区间[2,3]内单调递增,在区间[3,4]内单调递减. ∵h(2)=-3,h(3)=2ln2-4,h(4)=2ln3-5,又h(2)<h(4), 故f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异实根⇔h(4)≤a<h(3). 即2ln3-5≤a<2ln2-4. 综上所述,a的取值范围是[2ln3-5,2ln2-4).
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网(a,b∈R)
(1)若y=f(x)图象上的点manfen5.com 满分网处的切线斜率为-4,求y=f(x)的极大值;
(2)若y=f(x)在区间[-1,2]上是单调减函数,求a+b的最小值.
查看答案
已知函数f(x)对任意实数x,y满足f(x)+f(y)=f(x+y)+3,f(3)=6,当x>0时,f(x)>3.
(1)判断f(x)在R上的单调性,并证明你的结论.
(2)是否存在实数a使f (a2-a-5)<4成立?若存在求出实数a;若不存在,则说明理由.
查看答案
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案
已知命题P:“函数f(x)=a2x2+ax-2在[-1,1]上存在零点”;命题Q:“只有一个实数x满足不等式x2+2ax+2a≤0”,若命题P或Q是假命题,求实数a的取值范围.
查看答案
已知函数manfen5.com 满分网满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为( )
A.manfen5.com 满分网
B.(0,1)
C.manfen5.com 满分网
D.(0,3)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.