满分5 > 高中数学试题 >

设数列{bn}满足:,bn+1=bn2+bn, (1)求证:; (2)若Tn=+...

设数列{bn}满足:manfen5.com 满分网,bn+1=bn2+bn
(1)求证:manfen5.com 满分网
(2)若Tn=manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网,对任意的正整数n,3Tn-log2m-5>0恒成立.求m的取值范围.
(1))要证明,只要能证bn+1=bn(bn+1),而 由已知:bn+1=bn2+bn,推导即可  (2)由(1)可求得 ,结合数列的特点考虑利用裂项求和,从而可得数列{bn}是单调递增数列,最后将恒成立问题转化为最值问题求解即可 【解析】 (1)∵,bn+1=bn2+bn=bn(bn+1), ∴对任意正整数n>0,有即:.…(4分) (2)Tn=()+()+…+()==2-.…(7分) ∵b n+1-bn=bn2>0,∴bn+1>bn,∴数列{bn}是单调递增数列. ∴数列{Tn}关于n递增.∴Tn≥T1.…(10分) ∵,∴ ∴…(12分) ∴ ∵3Tn-log2m-5>0恒成立,∴log2m<3Tn-5恒成立, ∴log2m<-3…(14分) ∴.…(16分)
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(1)设manfen5.com 满分网,且manfen5.com 满分网,求θ的值;
(2)在△ABC中,AB=1,manfen5.com 满分网,且△ABC的面积为manfen5.com 满分网,求sinA+sinB的值.
查看答案
设平面向量manfen5.com 满分网=(cosx,sinx),manfen5.com 满分网manfen5.com 满分网,x∈R,
(Ⅰ)若manfen5.com 满分网,求cos(2x+2α)的值;
(Ⅱ)若manfen5.com 满分网,证明manfen5.com 满分网manfen5.com 满分网不可能平行;
(Ⅲ)若α=0,求函数manfen5.com 满分网的最大值,并求出相应的x值.
查看答案
记关于x的不等式manfen5.com 满分网的解集为P,不等式|x-1|≤1的解集为Q.
(I)若a=3,求P;
(II)若Q⊆P,求正数a的取值范围.
查看答案
已知数列{an}的前n项和为Sn,对任意n∈N*,都有Sn=manfen5.com 满分网an-manfen5.com 满分网,且1<Sk<9(k∈N*),则a1=    ,k=    查看答案
若正方形ABCD边长为1,点P在线段AC上运动,则manfen5.com 满分网的取值范围是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.