满分5 > 高中数学试题 >

已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+...

已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f'(x)是奇函数.
(1)求f(x)的表达式;
(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.
(Ⅰ)由f'(x)=3ax2+2x+b得g(x)=fax2+(3a+1)x2+(b+2)x+b,再由函数g(x)是奇函数,由g(-x)=-g(x),利用待系数法求解. (2)由(1)知,再求导g'(x)=-x2+2,由g'(x)≥0求得增区间,由g'(x)≤0求得减区间;求最值时从极值和端点值中取. 【解析】 (1)由题意得f'(x)=3ax2+2x+b 因此g(x)=f(x)+f'(x)=ax3+(3a+1)x2+(b+2)x+b 因为函数g(x)是奇函数,所以g(-x)=-g(x), 即对任意实数x,有a(-x)3+(3a+1)(-x)2+(b+2)(-x)+b=-[ax3+(3a+1)x2+(b+2)x+b] 从而3a+1=0,b=0, 解得,因此f(x)的解析表达式为. (2)由(Ⅰ)知, 所以g'(x)=-x2+2,令g'(x)=0 解得 则当时,g'(x)<0 从而g(x)在区间,上是减函数, 当, 从而g(x)在区间上是增函数, 由前面讨论知,g(x)在区间[1,2]上的最大值与最小值只能在时取得, 而, 因此g(x)在区间[1,2]上的最大值为,最小值为.
复制答案
考点分析:
相关试题推荐
一条直线经过点P(3,2),并且分别满足下列条件,求直线方程:
(1)倾斜角是直线x-4y+3=0的倾斜角的2倍;
(2)与x、y轴的正半轴交于A、B两点,且△AOB的面积最小(O为坐标原点)
查看答案
如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列命题:
①过M点有且只有一条直线与直线AB、B1C1都相交;
②过M点有且只有一条直线与直线AB、B1C1都垂直;
③过M点有且只有一个平面与直线AB、B1C1都相交;
④过M点有且只有一个平面与直线AB、B1C1都平行.
其中真命题是    .(把你认为正确命题的序号都填上)
manfen5.com 满分网 查看答案
设F1和F2为双曲线manfen5.com 满分网的两个焦点,若F1、F2、P(0,2b)是正三角形的三个顶点,则双曲线的离心率为    查看答案
manfen5.com 满分网如图,二面角α-l-β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是    查看答案
已知点P(x,y)是曲线manfen5.com 满分网上的动点,则点P到直线y=x+3的距离的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.