满分5 > 高中数学试题 >

已知函数f(x)=. (1)判断其奇偶性; (2)指出该函数在区间(0,1)上的...

已知函数f(x)=manfen5.com 满分网
(1)判断其奇偶性;
(2)指出该函数在区间(0,1)上的单调性并证明;
(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.
(1)由已知易判断出函数的定义域为R,关于原点对称,再判断f(-x)与f(x)的关系,即可根据函数奇偶性的定义,进行判断得到结论; (2)任取x1、x2满足0<x1<x2<1,并做出f(x1)-f(x2)的差,利用实数的性质,判断出f(x1)与f(x2)的大小,根据函数单调性的定义,即可得到答案; (3)由(1)可得函数为奇函数,由(2)可得函数在(0,1)上为增函数,根据奇函数在对称区间上单调性相同,即可得到答案. 【解析】 (1)函数的定义域为R ∵ ∴f(x)是奇函数; (2)函数f(x)在(0,1)上是增函数 证明:任取x1、x2满足0<x1<x2<1则 f(x1)-f(x2)== ∵0<x1<x2<1, ∴x1-x2<0,0<x1x2<1, ∴f(x1)<f(x2) 因此函数f(x)在(0,1)上是递增函数; (3)由于f(x)是R上的奇函数,在(0,1)上又是递增函数, 因而该函数在(-1,0)上也是增函数.
复制答案
考点分析:
相关试题推荐
已知两直线l1:mx+8y+n=0和l2:2x+my-1=0,
(1)若l1与l2交于点p(m,-1),求m,n的值;
(2)若l1∥l2,试确定m,n需要满足的条件;
(3)若l1⊥l2,试确定m,n需要满足的条件.
查看答案
如图所示的一个三视图中,右面是一个长方体截去一角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)
manfen5.com 满分网
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积.
查看答案
若x1满足2x+2x=5,x2满足2x+2log2(x-1)=5,则x1+x2=    查看答案
若直线l过点A(0,a)斜率为1,圆x2+y2=4上恰有3个点到l的距离为1,则a的值为    查看答案
一个正三棱锥的底面边长为6,侧棱长为manfen5.com 满分网,那么这个正三棱锥的体积是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.