根据定义在R上的偶函数y=f(x)满足f(x+2)=-f(x),可知函数是周期函数,又在[-2,0]上单调递减,可知函数y=f(x)在[0.2]上是单调递增,把f()、f()应用周期性转化到[0.2]上求解.
【解析】
∵f(x+2)=-f(x),
∴f(x+4)=f[(x+2)+2]=-f(x+2)=f(x)
∴f(x)是周期函数.
∵定义在R上的偶函数y=f(x),且在[-2,0]上单调递减
∴函数y=f(x)在[0.2]上是单调递增,
∴f()=f(-)=f(),f()=f(-3)=f(1)
∴b<c<a
故选B.