满分5 > 高中数学试题 >

在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知. (1)若△ABC...

在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知manfen5.com 满分网
(1)若△ABC的面积等于manfen5.com 满分网,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
(Ⅰ)先通过余弦定理求出a,b的关系式;再通过正弦定理及三角形的面积求出a,b的另一关系式,最后联立方程求出a,b的值. (Ⅱ)通过C=π-(A+B)及二倍角公式及sinC+sin(B-A)=2sin2A,求出∴sinBcosA=2sinAcosA.当cosA=0时求出a,b的值进而通过absinC求出三角形的面积;当cosA≠0时,由正弦定理得b=2a,联立方程解得a,b的值进而通过absinC求出三角形的面积. 【解析】 (Ⅰ)∵c=2,C=,c2=a2+b2-2abcosC ∴a2+b2-ab=4, 又∵△ABC的面积等于, ∴, ∴ab=4 联立方程组,解得a=2,b=2 (Ⅱ)∵sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sin2A=4sinAcosA, ∴sinBcosA=2sinAcosA 当cosA=0时,,,,,求得此时 当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a, 联立方程组解得,. 所以△ABC的面积 综上知△ABC的面积
复制答案
考点分析:
相关试题推荐
如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,manfen5.com 满分网,OA⊥底面ABCD,OA=2,M为OA的中点.
(1)求异面直线AB与MD所成角的大小;
(2)求点B到平面OAC的距离.

manfen5.com 满分网 查看答案
已知z=1+i,a,b∈R,若manfen5.com 满分网,求a,b的值.
查看答案
定义函数manfen5.com 满分网,给出下列四个命题:①该函数的值域是[-2,2];②该函数是以π为最小正周期的周期函数;③当且仅当manfen5.com 满分网时该函数取得最大值2;④当且仅当manfen5.com 满分网时,f(x)<0.上述命题中,错误命题的个数是( )
A.1个
B.2个
C.3个
D.4个
查看答案
如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{an}(n∈N*)的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则a2009+a2010+a2011等于( )
manfen5.com 满分网
A.1003
B.1005
C.1006
D.2011
查看答案
如右图,在正方体ABCD-A1B1C1D1中,M是棱DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角的大小为( )
manfen5.com 满分网
A.与点P的位置有关
B.45°
C.60°
D.90°
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.