满分5 > 高中数学试题 >

设函数f(x)=x2+2x-2ln(1+x). (Ⅰ)求函数f(x)的单调区间;...

设函数f(x)=x2+2x-2ln(1+x).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当manfen5.com 满分网时,是否存在整数m,使不等式m<f(x)≤-m2+2m+e2恒成立?若存在,求整数m的值;若不存在,请说明理由.
(Ⅲ)关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,求实数a的取值范围.
(Ⅰ)先求出函数的定义域,再求出其导函数,令导函数大于0得到增区间,小于0得到减区间,考虑自变量取值最后得到单调区间即可;(Ⅱ)根据(Ⅰ)求出函数的最值,不等式m<f(x)≤-m2+2m+e2恒成立意思是f(x)max≤-m2+2m+e2,f(x)min≥m,求出解集得到m的整数解即可;(Ⅲ)在[0,2],由f(x)=x2+x+a和条件f(x)=x2+2x-2ln(1+x)相等得到x2+x+a=x2+2x-2ln(1+x)即x-a-2ln(1+x)=0,然后令g(x)=x-a-2ln(1+x),求出其导函数,由g′(x)>0得1<x≤2;由g′(x)<0得0≤x<1.g(x)在[0,1]上单调递减,在[1,2]上单调递增.得到g(0)和g(2)都大于等于0,g(1)小于零,列出不等式组,求出解集即可a的范围. 解析:(Ⅰ)由1+x>0得函数f(x)的定义域为(-1,+∞), . 由f′(x)>0得x>0;由f′(x)<0得-1<x<0, ∴函数f(x)的递增区间是(0,+∞);递减区间是(-1,0). (Ⅱ)由(Ⅰ)知,f(x)在上递减,在[0,e-1]上递增. ∴f(x)min=f(0)=0 又∵,f(e-1)=e2-3,且, ∴时,f(x)max=e2-3. ∵不等式m<f(x)≤-m2+2m+e2恒成立, ∴, 即 ∵m是整数,∴m=-1. ∴存在整数m,使不等式m<f(x)≤-m2+2m+e2恒成立. (Ⅲ)由f(x)=x2+x+a得x-a-2ln(1+x)=0,x∈[0,2] 令g(x)=x-a-2ln(1+x),则,x∈[0,2] 由g′(x)>0得1<x≤2;由g′(x)<0得0≤x<1. ∴g(x)在[0,1]上单调递减,在[1,2]上单调递增. ∵方程f(x)=x2+x+a在[0,2]上恰有两个相异的实根, ∴函数g(x)在[0,1)和(1,2]上各有一个零点, ∴, ∴实数a的取值范围是1-2ln2<a≤2-2ln3
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,长轴长为manfen5.com 满分网,直线l:y=kx+m交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)若m=1,且manfen5.com 满分网,求k的值(O点为坐标原点);
(Ⅲ)若坐标原点O到直线l的距离为manfen5.com 满分网,求△AOB面积的最大值.
查看答案
如图,在三棱柱ABC-A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点.
(Ⅰ)求证:CD∥平面A1EB;
(Ⅱ)求证:AB1⊥平面A1EB;
(Ⅲ)求直线B1E与平面AA1C1C所成角的正弦值.

manfen5.com 满分网 查看答案
用数学归纳法证明等式:n∈N,n≥1,manfen5.com 满分网
查看答案
对大于或等于2的自然数m的n次方幂有如下分解方式:22=1+332=1+3+542=1+3+5+723=3+533=7+9+1143=13+15+17+19.根据上述分解规律,则52=1+3+5+7+9,若m3(m∈N*)的分解中最小的数是73,则m的值为    查看答案
设函数f(x)=x2+aln(1+x)有两个极值点,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.