满分5 > 高中数学试题 >

设命题P:关于x的不等式a1x2+b1x+c1>0与a2x2+b2x+c2>0的...

设命题P:关于x的不等式a1x2+b1x+c1>0与a2x2+b2x+c2>0的解集相同;命题Q:manfen5.com 满分网,则命题Q是命题P的( )
A.充要条件
B.充分非必要条件
C.必要非充分条件
D.既不充分也不必要条件
通过举反例即可判断. 【解析】 通过举反例a1=b1=c1=1,a2=b2=c2=-1,可知Q不是P的充分条件,由不等式(x-1)2+1>0和(x-1)2+2>0的解集都是R,即M=N=R,但不等式整理成标准形式后它们的同类项系数之比不相等.故选D.
复制答案
考点分析:
相关试题推荐
对于任意函数y=f(x),在同一坐标系中,函数y=f(x-1)和函数y=f(1-x)的图象恒关于直线l对称,则l为( )
A.x轴
B.直线x=-1
C.直线x=1
D.y轴
查看答案
已知函数f(x)=exmanfen5.com 满分网,a∈R.
(1)设函数F(x)=f(x)-g(x),讨论F(x)的极值点的个数;
(2)若-2≤a≤1,求证:对任意的x1,x2∈[1,2],且x1<x2时,都有manfen5.com 满分网
查看答案
已知正项数列{an} 满足Sn+Sn-1=tan2+2(n≥2,t>0),a1=1,其中Sn是数{an} 的前n项和.
(1)求a2及通项an
(2)记数列{manfen5.com 满分网}的前n项和为Tn,若Tn<2对所有的n∈N+都成立,求证:0<t≤1.
查看答案
如图,在直角△ABC中,∠C=90°,AB=2BC,E、F为线段AC、AB上的点,EF∥BC,将△AEF沿直线EF翻折成△A'EF,使平面A'EF⊥平面BCE,且T为A'B中点,FT∥平面△A'EC
(1)问E点在什么位置?并说明理由;
(2)求直线FC与平面A'BC所成角的正弦值.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB-ccosB.
(I)求cosB的值;
(II)若manfen5.com 满分网,且manfen5.com 满分网,求a和c的值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.