如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD中点.
(I)试证:CD⊥平面BEF;
(II)高PA=k•AB,且二面角E-BD-C的平面角大小30°,求k的取值范围.
考点分析:
相关试题推荐
(文科做)已知平面α∥面β,AB、CD为异面线段,AB⊂α,CD⊂β,且AB=a,CD=b,AB与CD所成的角为θ,平面γ∥面α,且平面γ与AC、BC、BD、AD分别相交于点M、N、P、Q.
(1)若a=b,求截面四边形MNPQ的周长;
(2)求截面四边形MNPQ面积的最大值.
查看答案
如图,已知矩形ABCD,M、N分别是AD、BC的中点,且AM=AB,将矩形沿MN折成直二面角,若P是DN上一动点,求P到BM距离的最小值.
查看答案
(理科做)(1)证明:面APC⊥面BEF;
(2)求平面PBC与平面PCD夹角的余弦值.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥面ABCD,AP=AB=2,BC=2
,E、F分别是AD、PC的中点.
(1)求证:EF∥面PAB;
(2)求EF与面ABCD所成角.
查看答案
已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至A′CD,使A′B=
.
(1)求证:BA′⊥面A′CD;
(2)求异面直线A′C与BD所成角的余弦值.
(3)(理科做)求二面角A′-CD-B的大小.
查看答案