满分5 > 高中数学试题 >

已知命题:“∃x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命题, ...

已知命题:“∃x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命题,
(1)求实数m的取值集合M;
(2)设不等式(x-a)(x+a-2)<0的解集为N,若x∈N是x∈M的必要条件,求a的取值范围.
(1)由x2-x-m=0可得m=x2-x=结合-1<x<1及二次函数的性质可求集合M (2)若x∈N是x∈M的必要条件,则M⊆N分类讨论①当a>2-a即a>1时,N={x|2-a<x<a},②当a<2-a即a<1时,N={x|a<x<2-a},③当a=2-a即a=1时,N=φ三种情况进行求解 【解析】 (1)由x2-x-m=0可得m=x2-x= ∵-1<x<1 ∴ M={m|} (2)若x∈N是x∈M的必要条件,则M⊆N ①当a>2-a即a>1时,N={x|2-a<x<a},则即 ②当a<2-a即a<1时,N={x|a<x<2-a},则即 ③当a=2-a即a=1时,N=φ,此时不满足条件 综上可得
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD中为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB.
查看答案
如图,在正三棱柱ABC-A1B1C1中,E∈BB1,F是AC的中点,截面A1EC⊥侧面AC1.求证:BF∥平面A1EC.

manfen5.com 满分网 查看答案
已知命题p:不等式|x-1|>m-1的解集为R,命题q:f(x)=-(5-2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.
查看答案
如图,把椭圆manfen5.com 满分网的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=   
manfen5.com 满分网 查看答案
圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是    cm.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.