满分5 > 高中数学试题 >

数列{an}是递减的等差数列,{an}的前n项和是sn,且s6=s9,有以下四个...

数列{an}是递减的等差数列,{an}的前n项和是sn,且s6=s9,有以下四个结论:
(1)a8=0;(2)当n等于7或8时,sn取最大值;(3)存在正整数k,使sk=0;(4)存在正整数m,使sm=s2m
写出以上所有正确结论的序号,答:   
由已知,得出a8=0,利用等差数列性质,前n项和公式,及灵活代换逐项判断,得出正确序号即可. 【解析】 ∵s6=s9∴a7+a8+a9=0,由等差数列性质,3a8=0,a8=0,①对. ∵数列{an}是递减的等差数列,由已知,a1>a2>…a7>a8=0>a9…,∴当n等于7或8时,sn取最大值 ②对 ∵a8=0,则S 15=(a1+a15)×15=15a8=0,∴存在正整数k=15,使sk=0;③对 由等差数列性质,S10-S5=a6+a7+a8+a9+a10=5a8=0,S10=S5 ∴存在正整数m=5,使sm=s2m.④对 故答案为:①②③④
复制答案
考点分析:
相关试题推荐
不等式x2+2x+c<0的解集是{x|m<x<1},则m=    ,c=    查看答案
正数a、b满足manfen5.com 满分网=9,则a+manfen5.com 满分网的最小值是    查看答案
在△ABC中,B=60°,a=1,c=2,则△ABC的面积是    查看答案
已知等差数列{an}中,a3+a5=12,a2=3,则a6的值是    查看答案
f(x)=ax2+bx+c,不等式f(x)>0的解集是{x|x1<x<x2},f(0)>0,则f(x1+x2)的值( )
A.小于0
B.大于0
C.等于0
D.以上三种情况都有可能
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.