(1)由题意,先由f(log2a)=b,log2f(a)=2(a>0且a≠1),解出a,b的值,得到f(x)的解析式,再由f(log2x)的形式选择配方法求得它的最小值及相应的x的值;
(2)由题意f(log2x)>f(1)且log2f(x)<f(1),解此两不等式即可得到x的值组成的集合.
【解析】
(1)由题意f(x)=x2-x+b
∴f(log2a)=(log2a)2-log2a+b=b
解得log2a=1,即可得a=2
又log2f(a)=2,得f(a)=4
∴a2-a+b=4,将a=2代入,解得b=2
∴f(x)=x2-x+2
∴f(log2x)=(log2x)2-log2x+2=(log2x-)2+
∴当log2x=,即x=时,f(log2x)的最小值是
答:f(log2x)的最小值是,相应 x的值x=
(2)由题意知
∴
∴
∴0<x<1
答:由x的值组成的集合是(0,1)