满分5 > 高中数学试题 >

设,g(x)=ax+5-2a(a>0). (1)求f(x)在x∈[0,1]上的值...

manfen5.com 满分网,g(x)=ax+5-2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x∈[0,1],使得g(x)=f(x1)成立,求a的取值范围.
(1)求f(x)的值域问题可用导数法;注意到分母为x2,可分子分母同除以x2,将分母变为关于的二次函数解决; 还可以将分母换元,转化为用双钩函数求最值. (2)对于任意x1∈[0,1],f(x1)范围由(1)可知,由题意即g(x)的值域包含f(x)的值域,转化为集合的关系问题. 【解析】 (1)法一:(导数法)在x∈[0,1]上恒成立. ∴f(x)在[0,1]上增, ∴f(x)值域[0,1]. 法二:,用复合函数求值域. 法三: 用双勾函数求值域. (2)f(x)值域[0,1],g(x)=ax+5-2a(a>0)在x∈[0,1]上的值域[5-2a,5-a]. 由条件,只须[0,1]⊆[5-2a,5-a]. ∴⇒.
复制答案
考点分析:
相关试题推荐
(1)已知集合manfen5.com 满分网,函数f(x)=log2(ax2-2x+2)的定义域为Q.若manfen5.com 满分网,求实数a的值;
(2)函数f(x)定义在R上且f(x+3)=f(x),当manfen5.com 满分网时,f(x)=log2(ax2-2x+2).若f(35)=1,求实数a的值.
查看答案
已知函数manfen5.com 满分网,若y=f(x)图象上的点manfen5.com 满分网处的切线斜率为-4,求y=f(x)的极大、极小值.
查看答案
定义在R上的函数y=f(x),若对任意不等实数x1,x2满足manfen5.com 满分网,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,manfen5.com 满分网的取值范围为    查看答案
图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n个图形包含f(n)个“福娃迎迎”,则f(5)=    ;f(n)-f(n-1)=   
manfen5.com 满分网 查看答案
在等比数列{an}中,若manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.