满分5 > 高中数学试题 >

在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△...

在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△ABC的周长为manfen5.com 满分网.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0,manfen5.com 满分网)且斜率为k的直线l与曲线W有两个不同的交点P和Q,求k的取值范围;
(Ⅲ)已知点M(manfen5.com 满分网),N(0,1),在(Ⅱ)的条件下,是否存在常数k,使得向量manfen5.com 满分网manfen5.com 满分网共线?如果存在,求出k的值;如果不存在,请说明理由.
(Ⅰ)利用条件找到,得动点C的轨迹是以A、B为焦点,长轴长为的椭圆除去与x轴的两个交点.代入椭圆的方程即可. (Ⅱ)直线l与曲线W有两个不同的交点P和Q,等价于把直线方程和椭圆方程联立后对应的方程有两个不等根,利用其判别式大于0即可. (Ⅲ)先把直线方程和椭圆方程联立后找到向量的坐标,利用向量与共线求出对应的k的取值,看其是否让(Ⅱ)成立即可. 【解析】 (Ⅰ)设C(x,y), ∵|AC|+|BC|+|AB|=2+2,|AB|=2, ∴|AC|+|BC|=2>2, ∴由定义知,动点C的轨迹是以A、B为焦点,长轴长为2的椭圆除去与x轴的两个交点. ∴a=,c=1.∴b2=a2-c2=1. ∴W:=1(y≠0).(2分) (Ⅱ)设直线l的方程为y=kx+,代入椭圆方程,得=1. 整理,得kx+1=0.①(5分) 因为直线l与椭圆有两个不同的交点P和Q等价于-2>0,解得k<-或k>. ∴满足条件的k的取值范围为(7分) (Ⅲ)设P(x1,y1),Q(x2,y2),则=(x1+x2,y1+y2), 由①得x1+x2=-.② 又y1+y2=k(x1+x2)+2③ 因为,N(0,1),所以.(11分) 所以与共线等价于x1+x2=-. 将②③代入上式,解得k=. 所以不存在常数k,使得向量与共线.(13分)
复制答案
考点分析:
相关试题推荐
已知四棱锥P-ABCD,底面是边长为1的正方形,侧棱PC长为2,且PC⊥底面ABCD,E是侧棱PC上的动点.
(Ⅰ)不论点E在何位置,是否都有BD⊥AE?证明你的结论;
(Ⅱ)求点C到平面PDB的距离;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

manfen5.com 满分网 查看答案
在“自选模块”考试中,某试场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况.
(Ⅰ)求选出的4 人均为选《矩阵变换和坐标系与参数方程》的概率;
(Ⅱ)设ξ为选出的4个人中选《数学史与不等式选讲》的人数,求ξ的分布列和数学期望.
查看答案
设函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若manfen5.com 满分网,是否存在实数m,使函数f(x)的值域恰为manfen5.com 满分网?若存在,请求出m的取值;若不存在,请说明理由.
查看答案
等差数列{an}的前n项和为Sn,且a4-a2=8,a3+a5=26.记Tn=manfen5.com 满分网,如果存在正整数M,使得对一切正整数n,Tn≤M都成立,则M的最小值是    查看答案
在平面直角坐标系中,manfen5.com 满分网分别是与x,y轴正方向同向的单位向量,平面内三点A、B、C满足manfen5.com 满分网manfen5.com 满分网. 若A、B、C三点构成直角三角形,则实数m的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.