先根据函数y=f(x)满足f(2+x)=f(2-x),得到函数y=f(x)的对称轴为x=2,然后根据对称性判定函数在在(-∞,2)上的单调性,最后根据单调性可求出a的范围.
【解析】
∵函数y=f(x)满足f(2+x)=f(2-x),
∴函数y=f(x)的对称轴为x=2
∵f(x)在[2,+∞)是减函数
∴f(x)在(-∞,2)是增函数
但a∈(-∞,2)时,f(a)≥f(0),则0≤a<2
当a∈[2,+∞)时,f(a)≥f(0)=f(4),则2≤a≤4
∴实数a的取值范围是0≤a≤4
故选C.