满分5 > 高中数学试题 >

某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),...

某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),下面是某日水深的数据:
t(小时)3691215182124
y(米)10.013.09.97.010.013.010.17.010.0
经长期观察:y=f(t)的曲线可近似看成函数y=Asinωt+b的图象(A>0,ω>0).
(1)求函数y=f(t)的近似表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?
(1)由表格得到三角函数的周期,利用周期公式求出ω;利用A等于最大值减去最小值和的一半;b等于最大值加上最小值的差的一半,求出f(t). (2)将实际问题转化为 不等式,列出不等式,结合三角函数的图象求出不等式的解集. 【解析】 (1)由题知:周期T=12,故ω=, 又b=10,A=3,∴t+10. (2)由题知:y=3sin t+10≥5+6.5,∴ ∴1≤t≤5或13≤t≤17 如图: 当该船1时入港,17时出港,停留时间最长,为16小时.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网=(cos(-θ),sin(-θ)),manfen5.com 满分网=manfen5.com 满分网
(1)求证:manfen5.com 满分网
(2)若存在不等于0的实数k和t,使manfen5.com 满分网=manfen5.com 满分网+(t2+3)manfen5.com 满分网manfen5.com 满分网=(-kmanfen5.com 满分网+tmanfen5.com 满分网),满足manfen5.com 满分网,试求此时manfen5.com 满分网的最小值.
查看答案
定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1),都有manfen5.com 满分网;②f(x)在(-1,1)上是单调递增函数,manfen5.com 满分网
(1)求f(0)的值;
(2)证明:f(x)为奇函数;
(3)解不等式f(2x-1)<1.
查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),manfen5.com 满分网
(1)若manfen5.com 满分网,求角α的值;
(2)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
已知函数f(x)=sinx+manfen5.com 满分网cosx.
(I)求f(x)的周期和振幅;
(II)用五点作图法作出f(x)在一个周期内的图象;
(III)写出函数f(x)的递减区间.
查看答案
设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求∁U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.