(1)若f(x)在x=2处取得极值,则f′(2)=0,可求出满足条件的c值;
(2)利用导数可求函数f(x)=x3-x2+cx+d的单调性,进而分析出当x<0时,函数的最大值,又由当x<0时,f(x)<d2+2d恒成立,可以构造出一个关于d的不等式,解不等式即可得到d的取值范围.
【解析】
(1)∵f(x)在x=2处取得极值,
∴f′(2)=4-2+c=0,
∴c=-2.
∴f(x)=x3-x2-2x+d,
(2)∵f′(x)=x2-x-2=(x-2)(x+1),
∴当x∈(-∞,-1]时,f′(x)>0,函数单调递增,当x∈(-1,2]时,f′(x)<0,函数单调递减.
∴x<0时,f(x)在x=-1处取得最大值 ,
∵x<0时,f(x)<恒成立,
∴<,即(d+7)(d-1)>0,
∴d<-7或d>1,
即d的取值范围是(-∞,-7)∪(1,+∞).