解法一:利用大小排除,
解法二:这三个点满足直角三角形,即可求解角的大小,进而求解R,
解法三:因为正三角形ABC的外径r=2,故可以得到高,D是BC的中点.
在△OBC中,又可以得到角以及边与R的关系,在Rt△ABD中,再利用直角三角形的勾股定理,即可解出R.
解法一:过O作OO′⊥平面ABC,O′是垂足,
则O′是△ABC的中心,则O′A=r=2,又因为∠AOC=θ=,
OA=OC知OA=AC<2O′A.其次,OA是Rt△OO′A的斜边,
故OA>O′A.所以O′A<OA<2O′A.因为OA=R,所以2<R<4.
因此,排除A、C、D,得B.
解法二:在正三角形ABC中,应用正弦定理,得AB=2rsin60°=2.
因为∠AOB=θ=,所以侧面AOB是正三角形,得球半径R=OA=AB=2.
解法三:因为正三角形ABC的外径r=2,故高AD=r=3,D是BC的中点.
在△OBC中,BO=CO=R,∠BOC=,所以BC=BO=R,BD=BC=R.
在Rt△ABD中,AB=BC=R,所以由AB2=BD2+AD2,得R2=R2+9,所以R=2.
故选B.