满分5 > 高中数学试题 >

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是...

manfen5.com 满分网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=manfen5.com 满分网,AF=1,M是线段EF的中点.
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.
(Ⅰ)要证AM∥平面BDE,直线证明直线AM平行平面BDE内的直线OE即可,也可以利用空间直角坐标系,求出向量,在平面BDE内求出向量,证明二者共线,说明AM∥平面BDE, (Ⅱ)在平面AFD中过A作AS⊥DF于S,连接BS,说明∠BSA是二面角A-DF-B的平面角,然后求二面角A-DF-B的大小;也可以建立空间直角坐标系,求出,说明是平面DFB的法向量,求出平面DAF的法向量,然后利用数量积求解即可. 【解析】 方法一 (Ⅰ)记AC与BD的交点为O,连接OE, ∵O、M分别是AC、EF的中点,ACEF是矩形, ∴四边形AOEM是平行四边形, ∴AM∥OE ∵OE⊂平面BDE,AM⊄平面BDE, ∴AM∥平面BDE (Ⅱ)在平面AFD中过A作AS⊥DF于S,连接BS, ∵AB⊥AF,AB⊥AD,AD∩AF=A, ∴AB⊥平面ADF, ∴AS是BS在平面ADF上的射影, 由三垂线定理得BS⊥DF ∴∠BSA是二面角A-DF-B的平面角 在Rt△ASB中, ∴, ∴二面角A-DF-B的大小为60° 方法二 (Ⅰ)建立如图所示的空间直角坐标系 设AC∩BD=N,连接NE, 则点N、E的坐标分别是(、(0,0,1), ∴=(, 又点A、M的坐标分别是 ()、( ∴=( ∴=且NE与AM不共线, ∴NE∥AM 又∵NE⊂平面BDE,AM⊄平面BDE, ∴AM∥平面BDF (Ⅱ)∵AF⊥AB,AB⊥AD,AF∩AD=A, ∴AB⊥平面ADF ∴为平面DAF的法向量 ∵=(•=0, ∴=(•=0得,∴NE为平面BDF的法向量 ∴cos<>= ∴的夹角是60° 即所求二面角A-DF-B的大小是60°
复制答案
考点分析:
相关试题推荐
已知(a2+1)n展开式中各项系数之和等于(manfen5.com 满分网x2+manfen5.com 满分网5的展开式的常数项,而(a2+1)n的展开式的二项式系数最大的项的系数等于54,求a的值.
查看答案
由三个电子元件j1,j2,j3组成的线路系统如图所示,每个电子元件能正常工作的概率都是t (0<t<1).
(1)求该线路系统正常工作的概率P;
(2)试问函数P(t)在区间(0,1)上是否存在最值?

manfen5.com 满分网 查看答案
在一个不透明的纸袋里装有5个大小相同的小球,其中有1个红球和4个黄球,规定每次从袋中任意摸出一球,若摸出的是黄球则不再放回,直到摸出红球为止,求摸球次数ξ的期望和方差.
查看答案
已知直线y=x+2与曲线y=ln(x+a)相切,则a的值为    查看答案
四棱锥的四个侧面三角形中,最多有    个直角三角形. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.