满分5 > 高中数学试题 >

已知函数f(x)=x3-3ax2-9a2x+a3. (1)设a=1,求函数f(x...

已知函数f(x)=x3-3ax2-9a2x+a3
(1)设a=1,求函数f(x)的极值;
(2)若manfen5.com 满分网,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a的取值范围.
(1)把a=1代入,找出导函数为0的自变量,看在自变量左右两侧导函数的符号来求极值即可. (2)转化为求导函数的绝对值在x∈[1,4a]上的最大值即可. 【解析】 (1)当a=1时,对函数f(x)求导数,得f′(x)=3x2-6x-9. 令f′(x)=0,解得x1=-1,x2=3. 列表讨论f(x),f′(x)的变化情况: 所以,f(x)的极大值是f(-1)=6,极小值是f(3)=-26. (2)f′(x)=3x2-6ax-9a2的图象是一条开口向上的抛物线,关于x=a对称. 若,则f′(x)在[1,4a]上是增函数, 从而(x)在[1,4a]上的最小值是f′(1)=3-6a-9a2,最大值是f′(4a)=15a2. 由|f′(x)|≤12a,得-12a≤3x2-6ax-9a2≤12a,于是有(1)=3-6a-9a2≥-12a,且f′(4a)=15a2≤12a. 由f′(1)≥-12a得-≤a≤1,由f′(4a)≤12a得 所以,即. 若a>1,则∵|f′(a)|=15a2>12a.故当x∈[1,4a]时|f′(x)|≤12a不恒成立. 所以使|f′(x)|≤12a(x∈[1,4a])恒成立的a的取值范围是
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当manfen5.com 满分网且E为PB的中点时,求AE与平面PDB所成的角的大小.
查看答案
设{an}为等比数列,且其满足:Sn=2n+a.
(1)求a的值及数列{an}的通项公式;
(2)数列{bn}的通项公式为manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA
(Ⅰ)求B的大小;
(Ⅱ)若manfen5.com 满分网,c=5,求b.
查看答案
在平面几何里,有:“若△ABC的三边长分别为a,b,c内切圆半径为r,则三角形面积为S△ABC=manfen5.com 满分网(a+b+c)r”,拓展到空间,类比上述结论,“若四面体A-ACD的四个面的面积分别为S1,S2,S3,S4内切球的半径为r,则四面体的体积为    查看答案
某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7000万元,则x的最小值    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.