满分5 > 高中数学试题 >

如图,椭圆经过点(0,1),离心率. (l)求椭圆C的方程; (2)设直线x=m...

manfen5.com 满分网如图,椭圆manfen5.com 满分网经过点(0,1),离心率manfen5.com 满分网
(l)求椭圆C的方程;
(2)设直线x=my+1与椭圆C交于A,B两点,点A关于x轴的对称点为A′(A′与B不重合),则直线A′B与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
(1)把点(0,1)代入椭圆方程求得a和b的关系,利用离心率求得a和c的关系,进而联立方程求得a和b,则椭圆的方程可得 (2)把直线方程与椭圆方程联立消去y,设出A,B的坐标,则A′的坐标可推断出,利用韦达定理表示出y1+y2和y1y2,进而可表示出A′B的直线方程,把y=0代入求得x的表达式,把x1=my1+1,x2=my2+1代入求得x=4,进而可推断出直线A′B与x轴交于定点(4,0). 【解析】 (1)依题意可得,解得a=2,b=1. 所以,椭圆C的方程是; (2)由 得(my+1)2+4y2=4,即(m2+4)y2+2my-3=0, 设A(x1,y1),B(x2,y2) 则A′(x1,-y1). 且. 经过点A′(x1,-y1), B(x2,y2)的直线方程为. 令y=0,则 又∵x1=my1+1,x2=my2+1.∴当y=0时, 这说明,直线A′B与x轴交于定点(4,0).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+3ax-1,a∈R.
(Ⅰ)若函数y=f(x)的图象在x=1处的切线与直线y=6x+6平行,求实数a的值;
(Ⅱ)设函数g(x)=f'(x)-6,对任意的-1<x<1,都有g(x)<0成立,求实数a的取值范围;
(Ⅲ)当a≤0时,请问:是否存在整数a的值,使方程f(x)=15有且只有一个实根?若存在,求出整数a的值;否则,请说明理由.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AD=2,AB=1,AC=manfen5.com 满分网
(Ⅰ)证明:CD⊥平面PAC;
(Ⅱ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知数列{an}为等差数列,Sn为其前n项和,且a2=3,4S2=S4
(1)求数列{an}的通项公式;
(2)求证数列{2an}是等比数列;
(3)求使得Sn+2>2Sn的成立的n的集合.
查看答案
已知manfen5.com 满分网
(1)求函数f(x)的最大值M,最小正周期T.
(2)若manfen5.com 满分网,求cos2α的值.
查看答案
已知抛物线y2=2px(p>0)与双曲线manfen5.com 满分网有相同的焦点为F,A是两条曲线的一个交点,且AF⊥x轴,则双曲线的离心率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.