已知数列{a
n}中,a
1=1,且点P(a
n,a
n+1)(n∈N
*)在直线x-y+1=0上.
(1)求数列{a
n}的通项公式;
(2)若函数
,求函数f(n)的最小值;
(3)设
表示数列{b
n}的前项和.试问:是否存在关于n的整式g(n),使得S
1+S
2+S
3+…+S
n-1=(S
n-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
考点分析:
相关试题推荐
已知椭圆
的离心率为
,直线l:y=x+2与以原点为圆心、椭圆C
1的短半轴长为半径的圆相切.
(1)求椭圆C
1的方程;
(2)设椭圆C
1的左焦点为F
1,右焦点为F
2,直线l
1过点F
1且垂直于椭圆的长轴,动直线l
2垂直于直线l
1,垂足为点P,线段PF
2的垂直平分线交l
2于点M,求点M的轨迹C
2的方程;
(3)设C
2与x轴交于点Q,不同的两点R,S在C
2上,且满足
,求
的取值范围.
查看答案
某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a元(a为常数,2≤a≤5 )的税收.设每件产品的售价为x元(35≤x≤41),根据市场调查,日销售量与e
x(e为自然对数的底数)成反比例.已知每件产品的日售价为40.
元时,日销售量为10件.
(1)求该商店的日利润L(x)元与每件产品的日售价x元的函数关系式;
(2)当每件产品的日售价为多少元时,该商品的日利润L(x)最大,并求出L(x)的最大值.
查看答案
如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°.
(I)求证:EF⊥平面BCE;
(II)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE.
查看答案
设函数
(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,
,求b,c的长.
查看答案
已知平面上的向量
、
满足
,
=2,设向量
,则
的最小值是
.
查看答案