满分5 > 高中数学试题 >

已知数列{an}是首项为,公比的等比数列,设,数列{cn}满足cn=an•bn....

已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
(1)根据等比数列的通项公式可求得an,代入求得bn+1-bn为常数,进而判断出数列{bn}是等差数列. (2)由(1)可分别求得an和bn,进而求得Cn进而用错位相减法进行求和. (3)把(2)中的Cn,代入Cn+1-Cn结果小于0,进而判断出当n≥2时,Cn+1<Cn,进而可推断出当n=1时,Cn取最大值,问题转化为≥,求得m的取值范围. 【解析】 (1)由题意知,an=()n. ∵, ∴b1=1 ∴bn+1-bn=3an+1=3an=3=3q=3 ∴数列{bn}是首项为1,公差为3的等差数列. (2)由(1)知,an=()n.bn=3n-2 ∴Cn=(3n-2)×()n. ∴Sn=1×+4×()2+…+(3n-2)×()n, 于是Sn=1×()2+4×()3+…(3n-2)×()n+1, 两式相减得Sn=+3×[()2+()3+…+()n)-(3n-2)×()n+1, =-(3n-2)×()n+1, ∴Sn=-()n+1 (3)∵Cn+1-Cn=(3n+1)×()n+1-(3n-2)×()n=9(1-n)×()n+1, ∴当n=1时,C2=C1= 当n≥2时,Cn+1<Cn,即C2=C1>C3>C4<…>Cn ∴当n=1时,Cn取最大值是 又 ∴≥ 即m2+4m-5≥0解得m≥1或m≤-5.
复制答案
考点分析:
相关试题推荐
设定义域在[x1,x2]的函数y=f(x)的图象为C,C的端点分别为A、B,M是C上的任一点,向量manfen5.com 满分网,若x=λx1+(1-λ)x2,记向量manfen5.com 满分网,现定义“函数y=f(x)在[x1,x2]上可在标准K下线性近似”是指manfen5.com 满分网恒成立,其中K是一个正数.
(1)证明:0≤λ≤1(2);
(3)请你给出一个标准K的范围,使得[0,1]上的函数y=x2(4)与y=x3(5)中有且只有一个可在标准K下线性近似.
查看答案
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40manfen5.com 满分网海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ(其中sinθ=manfen5.com 满分网,0°<θ<90°)且与点A相距10manfen5.com 满分网海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.

manfen5.com 满分网 查看答案
已知函数f(x)=log4(4x+1)+kx (x∈R)是偶函数.
(1)求k的值;
(2)若方程f(x)-m=0有解,求m的取值范围.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网,求θ;
(2)求manfen5.com 满分网的最大值.
查看答案
已知定义在R上的函数f(x)=x2(ax-3),若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,则正数a的范围    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.